Reviewing the Main Cancer Therapies: Virotherapy Has A High Potential for Cancer Treatment
Abstract
Cancer is one of the main causes of death all over the world, accounting for about 10 million deaths in 2020. On the other hand, a lot of money, time and energy are spent in the treatment process of this disease. In fact, cancer is a big challenge that we have been facing for years, but there is still no method that can definitively cure this disease. For years, we have mainly used surgery, chemotherapy and radiation therapy to treat cancer. Although many advances have been made in these methods, these methods are not a definitive cure for all types of cancer and also have many complications and impose high costs on patients. By the high success of Chimeric Antigen Receptor (CAR) T cell therapy in the treatment of leukemia, hopes for effective treatment for various types of cancer increased, but by testing this method in solid tumors, it was found that this method has low efficiency in solid tumors. In this review article, I consider the challenges and mechanisms that cancer cells apply to resist different main therapies, and finally, by comparing the challenges of different therapies, I conclude that virus therapy has a higher potential than other methods to end the problem of cancer and become a definitive cure for cancer.
2. Arruebo M, Vilaboa N, Sáez-Gutierrez B, Lambea J, Tres A, Valladares M, et al. Assessment of the evolution of cancer treatment therapies. Cancers. 2011 Aug 12;3(3):3279-330.
3. Giladi M, Schneiderman RS, Voloshin T, Porat Y, Munster M, Blat R, et al. Mitotic spindle disruption by alternating electric fields leads to improper chromosome segregation and mitotic catastrophe in cancer cells. Sci. Rep.. 2015 Dec 11;5(1):1-6.
4. Kirson ED, Gurvich Z, Schneiderman R, Dekel E, Itzhaki A, Wasserman Y, et al. Disruption of cancer cell replication by alternating electric fields. Cancer Res.. 2004 May 1;64(9):3288-95.
5. Huang CY, Ju DT, Chang CF, Reddy PM, Velmurugan BK. A review on the effects of current chemotherapy drugs and natural agents in treating non–small cell lung cancer. Biomedicine. 2017 Dec;7(4).
6. Akamatsu N, Sugawara Y, Hashimoto D. Surgical strategy for bile duct cancer: Advances and current limitations. World J. Clin. Oncol.. 2011 Feb 2;2(2):94.
7. Tohme S, Simmons RL, Tsung A. Surgery for cancer: a trigger for metastases. Cancer Res.. 2017 Apr 1;77(7):1548-52.
8. Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat. Rev. Cancer.. 2002 Aug;2(8):563-72.
9. Yamaguchi K, Takagi Y, Aoki S, Futamura M, Saji S. Significant detection of circulating cancer cells in the blood by reverse transcriptase–polymerase chain reaction during colorectal cancer resection. Ann. Surg.. 2000 Jul 1;232(1):58-65.
10. Liotta LA, Kleinerman J, Saidel GM. Quantitative relationships of intravascular tumor cells, tumor vessels, and pulmonary metastases following tumor implantation. Cancer Res.. 1974 May;34(5):997-1004.
11. Koch M, Kienle P, Hinz U, Antolovic D, Schmidt J, Herfarth C, et al. Detection of hematogenous tumor cell dissemination predicts tumor relapse in patients undergoing surgical resection of colorectal liver metastases. Ann. Surg.. 2005 Feb;241(2):199.
12. Rushfeldt C, Sveinbjørnsson B, Seljelid R, Smedsrød B. Early events of hepatic metastasis formation in mice: Role of kupffer and NK-cells in natural and interferon-γ-stimulated defense. J. Surg. Res.. 1999 Apr 1;82(2):209-15.
13. Oosterling SJ, van der Bij GJ, Meijer GA, Tuk CW, van Garderen E, van Rooijen N, et al. Macrophages direct tumour histology and clinical outcome in a colon cancer model. J. Pathol.. 2005 Oct;207(2):147-55.
14. Michelson S, Leith JT. Dormancy, regression, and recurrence: towards a unifying theory of tumor growth control. J. Theor. Biol.. 1994 Aug 21;169(4):327-38.
15. Bukowski K, Kciuk M, Kontek R. Mechanisms of multidrug resistance in cancer chemotherapy. Int. J. Mol. Sci.. 2020 Jan;21(9):3233.
16. Luqmani YA. Mechanisms of drug resistance in cancer chemotherapy. Med Princ Pract. 2005;14(Suppl. 1):35-48.
17. Wu Q, Yang Z, Nie Y, Shi Y, Fan D. Multi-drug resistance in cancer chemotherapeutics: mechanisms and lab approaches. Cancer Lett.. 2014 Jun 1;347(2):159-66.
18. Wang J, Seebacher N, Shi H, Kan Q, Duan Z. Novel strategies to prevent the development of multidrug resistance (MDR) in cancer. Oncotarget. 2017 Oct 10;8(48):84559.
19. Wang X, Zhang H, Chen X. Drug resistance and combating drug resistance in cancer. CDR. 2019;2(2):141.
20. Dallavalle S, Dobričić V, Lazzarato L, Gazzano E, Machuqueiro M, Pajeva I, et al. Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors. Drug Resist. Updat.. 2020 May 1;50:100682.
21. Leary M, Heerboth S, Lapinska K, Sarkar S. Sensitization of drug resistant cancer cells: a matter of combination therapy. Cancers. 2018 Dec 4;10(12):483.
22. Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, et al. Drug resistance in cancer: an overview. Cancers. 2014 Sep 5;6(3):1769-92.
23. Luvero D, Milani A, Ledermann JA. Treatment options in recurrent ovarian cancer: latest evidence and clinical potential. Ther. Adv. Med. Oncol.. 2014 Sep;6(5):229-39.
24. Mantia-Smaldone GM, Edwards RP, Vlad AM. Targeted treatment of recurrent platinum-resistant ovarian cancer: current and emerging therapies. Cancer Manag Res. 2010 Dec 30:25-38.
25. Gottesman MM, Pastan IH. The role of multidrug resistance efflux pumps in cancer: revisiting a JNCI publication exploring expression of the MDR1 (P-glycoprotein) gene. J. Natl. Cancer Inst.. 2015 Sep 1;107(9):djv222.
26. Bourhis J, Goldstein LJ, Riou G, Pastan I, Gottesman MM, Bénard J. Expression of a human multidrug resistance gene in ovarian carcinomas. Cancer Res.. 1989 Sep 15;49(18):5062-5.
27. Brown KS. Chemotherapy and other systemic therapies for hepatocellular carcinoma and liver metastases. In Semin. Interv. Radiol.2006 Mar (Vol. 23, No. 01, pp. 099-108). Copyright© 2006 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA..
28. Nurgali K, Jagoe RT, Abalo R. Adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae?. Front. pharmacol.. 2018 Mar 22;9:245.
29. Sharma RA, Plummer R, Stock JK, Greenhalgh TA, Ataman O, Kelly S, et al. Clinical development of new drug–radiotherapy combinations. Nat. Rev. Clin. Oncol.. 2016 Oct;13(10):627-42.
30. Huang RX, Zhou PK. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther. 2020 May 1;5(1):1-27.
31. Newhauser WD, de Gonzalez AB, Schulte R, Lee C. A review of radiotherapy-induced late effects research after advanced technology treatments. Front Oncol. 2016 Feb 10;6:13.
32. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA: Cancer J. Clin.. 2015 Jan;65(1):5-29.
33. Antal Z, Sklar CA. Gonadal function and fertility among survivors of childhood cancer. Endocrinol. Metab. Clin. North Am.. 2015 Dec 1;44(4):739-49.
34. Darby SC, Ewertz M, McGale P, Bennet AM, Blom-Goldman U, Brønnum D, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N. Engl. J. Med.. 2013 Mar 14;368(11):987-98.
35. Mulrooney DA, Yeazel MW, Kawashima T, Mertens AC, Mitby P, Stovall M, et al. Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: retrospective analysis of the Childhood Cancer Survivor Study cohort. Bmj. 2009 Dec 9;339.
36. Krull KR, Sabin ND, Reddick WE, Zhu L, Armstrong GT, Green DM, et al. Neurocognitive function and CNS integrity in adult survivors of childhood hodgkin lymphoma. J. Clin. Oncol.. 2012 Oct 10;30(29):3618.
37. Krull KR, Minoshima S, Edelmann M, Morris B, Sabin ND, Brinkman TM, et al. Regional brain glucose metabolism and neurocognitive function in adult survivors of childhood cancer treated with cranial radiation. J. Nucl. Med.. 2014 Nov 1;55(11):1805-10.
38. Oeffinger KC, Mertens AC, Sklar CA, Kawashima T, Hudson MM, Meadows AT, et al. Chronic health conditions in adult survivors of childhood cancer. N. Engl. J. Med.. 2006 Oct 12;355(15):1572-82.
39. Armstrong GT, Kawashima T, Leisenring W, Stratton K, Stovall M, Hudson MM, et al. Aging and risk of severe, disabling, life-threatening, and fatal events in the childhood cancer survivor study. J. Clin. Oncol.. 2014 Apr 4;32(12):1218.
40. Seo YS, Ko IO, Park H, Jeong YJ, Park JA, Kim KS, et al. Radiation-induced changes in tumor vessels and microenvironment contribute to therapeutic resistance in glioblastoma. Front Oncol. 2019 Nov 15;9:1259.
41. Ranawat P, Rawat S. Radiation resistance in thermophiles: mechanisms and applications. World J. Microbiol. Biotechnol.. 2017 Jun;33(6):1-22.
42. Steinbichler TB, Dudás J, Skvortsov S, Ganswindt U, Riechelmann H, Skvortsova II. Therapy resistance mediated by exosomes. Mol. Cancer. 2019 Dec;18(1):1-1.
43. Meads MB, Gatenby RA, Dalton WS. Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat. Rev. Cancer. 2009 Sep;9(9):665-74.
44. Hegedus F, Mathew LM, Schwartz RA. Radiation dermatitis: an overview. Int. J. Dermatol.. 2017 Sep;56(9):909-14.
45. Facoetti A, Barcellini A, Valvo F, Pullia M. The role of particle therapy in the risk of radio-induced second tumors: a review of the literature. Anticancer Res.. 2019 Sep 1;39(9):4613-7.
46. Lee JW, Wernicke AG. Risk and survival outcomes of radiation-induced CNS tumors. J. Neurooncol.. 2016 Aug;129(1):15-22.
47. Groot HJ, Gietema JA, Aleman BM, Incrocci L, de Wit R, Witjes JA, et al. Risk of diabetes after para-aortic radiation for testicular cancer. Br. J. Cancer. 2018 Oct;119(7):901-7.
48. Luo D, Wang X, Zeng S, Ramamurthy G, Burda C, Basilion JP. Targeted gold nanocluster‐enhanced radiotherapy of prostate cancer. Small. 2019 Aug;15(34):1900968.
49. Castro-Eguiluz D, Leyva-Islas JA, Luvian-Morales J, Martínez-Roque V, Sánchez-López M, Trejo-Durán G, et al. Nutrient recommendations for cancer patients treated with pelvic radiotherapy, with or without comorbidities. Rev. Invest. Clin.. 2018 Aug 7;70(3):130-5.
50. Roy S, Trinchieri G. Microbiota: a key orchestrator of cancer therapy. Nat. Rev. Cancer. 2017 May;17(5):271-85.
51. Aghajanzadeh S, Karlsson T, Tuomi L, Finizia C. The effect of jaw exercises on anxiety and depression in patients with head and neck cancer receiving radiotherapy: Prospective 2‐year follow‐up study. Head Neck. 2020 Feb;42(2):330-5.
52. Santivasi WL, Xia F. Ionizing radiation-induced DNA damage, response, and repair. Antioxid. Redox Signal.. 2014 Jul 10;21(2):251-9.
53. Li T, Chen ZJ. The cGAS–cGAMP–STING pathway connects DNA damage to inflammation, senescence, and cancer. J. Exp. Med.. 2018 May 7;215(5):1287-99.
54. Schuch AP, Garcia CC, Makita K, Menck CF. DNA damage as a biological sensor for environmental sunlight. Photochem. Photobiol. Sci.. 2013;12(8):1259-72.
55. Hau PM, Deng W, Jia L, Yang J, Tsurumi T, Chiang AK, et al. Role of ATM in the formation of the replication compartment during lytic replication of Epstein-Barr virus in nasopharyngeal epithelial cells. J. Virol.. 2015 Jan 1;89(1):652-68.
56. Heijink AM, Krajewska M, van Vugt MA. The DNA damage response during mitosis. MUTAT RES-FUND MOL M. 2013 Oct 1;750(1-2):45-55.
57. Mladenov E, Magin S, Soni A, Iliakis G. DNA double-strand break repair as determinant of cellular radiosensitivity to killing and target in radiation therapy. Front Oncol. 2013 May 10;3:113.
58. Koval L, Proshkina E, Shaposhnikov M, Moskalev A. The role of DNA repair genes in radiation-induced adaptive response in Drosophila melanogaster is differential and conditional. Biogerontology. 2020 Feb;21(1):45-56.
59. Iliakis G, Mladenov E, Mladenova V. Necessities in the processing of DNA double strand breaks and their effects on genomic instability and cancer. Cancers. 2019 Oct 28;11(11):1671.
60. Karanam NK, Ding L, Aroumougame A, Story MD. Tumor treating fields cause replication stress and interfere with DNA replication fork maintenance: implications for cancer therapy. Transl Res. 2020 Mar 1;217:33-46.
61. Dukaew N, Konishi T, Chairatvit K, Autsavapromporn N, Soonthornchareonnon N, Wongnoppavich A. Enhancement of radiosensitivity by eurycomalactone in human NSCLC cells through G2/M cell cycle arrest and delayed DNA double-strand break repair. Oncol. Res.. 2020;28(2):161.
62. Resnick MA. The repair of double-strand breaks in DNA: a model involving recombination. J. Theor. Biol.. 1976 Jun 1;59(1):97-106.
63. Lodovichi S, Bellè F, Cervelli T, Lorenzoni A, Maresca L, Cozzani C, et al. Effect of BRCA1 missense variants on gene reversion in DNA double-strand break repair mutants and cell cycle-arrested cells of Saccharomyces cerevisiae. Mutagenesis. 2020 Mar 27;35(2):189-95.
64. Roth DB, Wilson JH. Relative rates of homologous and nonhomologous recombination in transfected DNA. Proc. Natl. Acad. Sci. U.S.A.. 1985 May;82(10):3355-9.
65. Mukherjee K, English N, Meers C, Kim H, Jonke A, Storici F, et al. Systematic analysis of linker histone PTM hotspots reveals phosphorylation sites that modulate homologous recombination and DSB repair. DNA repair. 2020 Feb 1;86:102763.
66. Roth DB, Porter TN, Wilson J. Mechanisms of nonhomologous recombination in mammalian cells. Mol. Cell. Biol.. 1985 Oct;5(10):2599-607.
67. Berthel E, Ferlazzo ML, Devic C, Bourguignon M, Foray N. What does the history of research on the repair of DNA double-strand breaks tell us?—a comprehensive review of human radiosensitivity. Int. J. Mol. Sci.. 2019 Oct 26;20(21):5339.
68. Foray N, Bourguignon M, Hamada N. Individual response to ionizing radiation. Mutat Res Rev Mutat Res. 2016 Oct 1;770:369-86.
69. Dilalla V, Chaput G, Williams T, Sultanem K. Radiotherapy side effects: integrating a survivorship clinical lens to better serve patients. Curr Oncol. 2020 May;27(2):107-12.
70. Cruz E, Kayser V. Monoclonal antibody therapy of solid tumors: clinical limitations and novel strategies to enhance treatment efficacy. Biologics. 2019;13:33.
71. Zahavi D, Weiner L. Monoclonal antibodies in cancer therapy. Antibodies. 2020 Jul 20;9(3):34.
72. Almagro JC, Daniels-Wells TR, Perez-Tapia SM, Penichet ML. Progress and challenges in the design and clinical development of antibodies for cancer therapy. Front. Immunol.. 2018 Jan 4;8:1751.
73. Santos ML, Quintilio W, Manieri TM, Tsuruta LR, Moro AM. Advances and challenges in therapeutic monoclonal antibodies drug development. Braz. J. Pharm. Sci.. 2018 Nov 8;54.
74. Benavente S, Huang S, Armstrong EA, Chi A, Hsu KT, Wheeler DL, et al. Establishment and characterization of a model of acquired resistance to epidermal growth factor receptor targeting agents in human cancer cells. Clin. Cancer Res.. 2009 Mar 1;15(5):1585-92.
75. Ahmad A. Current updates on trastuzumab resistance in HER2 overexpressing breast cancers. Breast Cancer Metastasis and Drug Resistance. 2019:217-28.
76. Pallasch CP, Leskov I, Braun CJ, Vorholt D, Drake A, Soto-Feliciano YM, et al. Sensitizing protective tumor microenvironments to antibody-mediated therapy. Cell. 2014 Jan 30;156(3):590-602.
77. Bhutani D, Vaishampayan UN. Monoclonal antibodies in oncology therapeutics: present and future indications. Expert Opin. Biol. Ther.. 2013 Feb 1;13(2):269-82.
78. Netti PA, Baxter LT, Boucher Y, Skalak R, Jain RK. Time-dependent behavior of interstitial fluid pressure in solid tumors: implications for drug delivery. Cancer Res.. 1995 Nov 15;55(22):5451-8.
79. Saga T, Neumann RD, Heya T, Sato J, Kinuya S, Le N, et al. Targeting cancer micrometastases with monoclonal antibodies: a binding-site barrier. Proc. Natl. Acad. Sci. U.S.A.. 1995 Sep 12;92(19):8999-9003.
80. Thurber GM, Schmidt MM, Wittrup KD. Antibody tumor penetration: transport opposed by systemic and antigen-mediated clearance. Adv. Drug Deliv. Rev.. 2008 Sep 15;60(12):1421-34.
81. Schmidt MM, Wittrup KD. A modeling analysis of the effects of molecular size and binding affinity on tumor targeting. Mol. Cancer Ther.. 2009 Oct;8(10):2861-71.
82. Marin-Acevedo JA, Dholaria B, Soyano AE, Knutson KL, Chumsri S, Lou Y. Next generation of immune checkpoint therapy in cancer: new developments and challenges. J. Hematol. Oncol.. 2018 Dec;11(1):1-20.
83. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer. 2012 Apr;12(4):252-64.
84. Schoenfeld AJ, Hellmann MD. Acquired resistance to immune checkpoint inhibitors. Cancer cell. 2020 Apr 13;37(4):443-55.
85. Chen X, Zhang W, Yang W, Zhou M, Liu F. Acquired resistance for immune checkpoint inhibitors in cancer immunotherapy: challenges and prospects. Aging (Albany N.Y.). 2022 Jan 31;14(2):1048.
86. Conway JR, Kofman E, Mo SS, Elmarakeby H, Van Allen E. Genomics of response to immune checkpoint therapies for cancer: implications for precision medicine. Genome Med.. 2018 Dec;10(1):1-8.
87. Kursunel MA, Esendagli G. The untold story of IFN-γ in cancer biology. Cytokine Growth Factor Rev.. 2016 Oct 1;31:73-81.
88. Zhang X, Zeng Y, Qu Q, Zhu J, Liu Z, Ning W, et al. PD-L1 induced by IFN-γ from tumor-associated macrophages via the JAK/STAT3 and PI3K/AKT signaling pathways promoted progression of lung cancer. Int. J. Clin. Oncol.. 2017 Dec;22(6):1026-33.
89. Arenas-Ramirez N, Sahin D, Boyman O. Epigenetic mechanisms of tumor resistance to immunotherapy. Cell. Mol. Life Sci.. 2018 Nov;75(22):4163-76.
90. Turley SJ, Cremasco V, Astarita JL. Immunological hallmarks of stromal cells in the tumour microenvironment. Nat. Rev. Immunol. 2015 Nov;15(11):669-82.
91. Sun Y. Tumor microenvironment and cancer therapy resistance. Cancer Lett.. 2016 Sep 28;380(1):205-15.
92. Furukawa K, Nagano T, Tachihara M, Yamamoto M, Nishimura Y. Interaction between immunotherapy and antiangiogenic therapy for cancer. Molecules. 2020 Aug 26;25(17):3900.
93. Saleh R, Elkord E. Treg-mediated acquired resistance to immune checkpoint inhibitors. Cancer Lett.. 2019 Aug 10;457:168-79.
94. Burugu S, Dancsok AR, Nielsen TO. Emerging targets in cancer immunotherapy. In Semin. Cancer Biol. 2018 Oct 1 (Vol. 52, pp. 39-52). Academic Press.
95. Verneau J, Sautés-Fridman C, Sun CM. Dendritic cells in the tumor microenvironment: prognostic and theranostic impact. In Semin. Immunol. 2020 Apr 1 (Vol. 48, p. 101410). Academic Press.
96. Lakins MA, Ghorani E, Munir H, Martins CP, Shields JD. Cancer-associated fibroblasts induce antigen-specific deletion of CD8+ T Cells to protect tumour cells. Nat. Commun. 2018 Mar 5;9(1):1-9.
97. Mesa C, Fernández LE. Challenges facing adjuvants for cancer immunotherapy. Immunol. Cell Biol.. 2004 Dec;82(6):644-50.
98. Shemesh CS, Hsu JC, Hosseini I, Shen BQ, Rotte A, Twomey P, et al. Personalized cancer vaccines: clinical landscape, challenges, and opportunities. Mol. Ther.. 2021 Feb 3;29(2):555-70.
99. Rezaei N, Keshavarz-Fathi M, editors. Vaccines for cancer immunotherapy: an evidence-based review on current status and future perspectives.
100. Song Q, Zhang CD, Wu XH. Therapeutic cancer vaccines: From initial findings to prospects. Immunol. Lett.. 2018 Apr 1;196:11-21.
101. Coventry BJ. Therapeutic vaccination immunomodulation: forming the basis of all cancer immunotherapy. Ther Adv Vaccines Immunother. 2019 Jul;7:2515135519862234.
102. Zhang J, Shi Z, Xu X, Yu Z, Mi J. The influence of microenvironment on tumor immunotherapy. FEBS J. 2019 Nov;286(21):4160-75.
103. Rahma OE, Gammoh E, Simon RM, Khleif SN. Is the “3+ 3” Dose-Escalation Phase I Clinical Trial Design Suitable for Therapeutic Cancer Vaccine Development? A Recommendation for Alternative DesignAn Alternative Design for Cancer Vaccine Trials. Clin. Cancer Res.. 2014 Sep 15;20(18):4758-67.
104. Tan AC, Goubier A, Kohrt HE. A quantitative analysis of therapeutic cancer vaccines in phase 2 or phase 3 trial. J. Immunother. Cancer. 2015 Dec;3(1):1-2.
105. van der Burg SH. Correlates of immune and clinical activity of novel cancer vaccines. In Semin. Immunol. 2018 Oct 1 (Vol. 39, pp. 119-136). Academic Press.
106. Tran T, Blanc C, Granier C, Saldmann A, Tanchot C, Tartour E. Therapeutic cancer vaccine: building the future from lessons of the past. In Semin Immunopathol 2019 Jan (Vol. 41, No. 1, pp. 69-85). Springer Berlin Heidelberg.
107. Lee S, Margolin K. Cytokines in cancer immunotherapy. Cancers. 2011 Oct 13;3(4):3856-93.
108. Uricoli B, Birnbaum LA, Do P, Kelvin JM, Jain J, Costanza E, et al. Engineered cytokines for cancer and autoimmune disease immunotherapy. Adv. Healthc. Mater.. 2021 Aug;10(15):2002214.
109. Chulpanova DS, Kitaeva KV, Green AR, Rizvanov AA, Solovyeva VV. Molecular aspects and future perspectives of cytokine-based anti-cancer immunotherapy. Front. Cell Dev. Biol.. 2020 Jun 3;8:402.
110. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. immunity. 2013 Jul 25;39(1):1-0.
111. Chen DS, Mellman I. Elements of cancer immunity and the cancer–immune set point. Nature. 2017 Jan;541(7637):321-30.
112. Berraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA, Pérez-Gracia JL, et al. Cytokines in clinical cancer immunotherapy. Br. J. Cancer. 2019 Jan;120(1):6-15.
113. Pires IS, Hammond PT, Irvine DJ. Engineering strategies for immunomodulatory cytokine therapies: challenges and clinical progress. Adv. Ther.. 2021 Aug;4(8):2100035.
114. Kwong B. Liposome-anchored local delivery of immunomodulatory agents for tumor therapy (Doctoral dissertation, Massachusetts Institute of Technology).
115. Sleijfer S, Bannink M, Van Gool AR, Kruit WH, Stoter G. Side effects of interferon-α therapy. Pharm. World Sci.. 2005 Dec;27(6):423-31.
116. Leonard JP, Sherman ML, Fisher GL, Buchanan LJ, Larsen G, Atkins MB, et al. Effects of single-dose interleukin-12 exposure on interleukin-12–associated toxicity and interferon-γ production. Blood, Am. J. Hematol.. 1997 Oct 1;90(7):2541-8.
117. Jones VS, Huang RY, Chen LP, Chen ZS, Fu L, Huang RP. Cytokines in cancer drug resistance: Cues to new therapeutic strategies. Biochim. Biophys. Acta - Rev. Cancer. 2016 Apr 1;1865(2):255-65.
118. Kartikasari AE, Huertas CS, Mitchell A, Plebanski M. Tumor-induced inflammatory cytokines and the emerging diagnostic devices for cancer detection and prognosis. Front Oncol. 2021;11.
119. Chen W, Qin Y, Liu S. Cytokines, breast cancer stem cells (BCSCs) and chemoresistance. CLIN TRANSL MED. 2018 Dec;7(1):1-3.
120. Lippitz BE. Cytokine patterns in patients with cancer: a systematic review. Lancet Oncol.. 2013 May 1;14(6):e218-28.
121. Esquivel-Velázquez M, Ostoa-Saloma P, Palacios-Arreola MI, Nava-Castro KE, Castro JI, Morales-Montor J. The role of cytokines in breast cancer development and progression. J. Interferon Cytokine Res.. 2015 Jan 1;35(1):1-6.
122. Newman G, Gonzalez-Perez RR. Leptin–cytokine crosstalk in breast cancer. Mol. Cell. Endocrinol.. 2014 Jan 25;382(1):570-82.
123. Cross D, Burmester JK. Gene therapy for cancer treatment: past, present and future. Clin Med Res. 2006 Sep 1;4(3):218-27.
124. Marelli G, Howells A, Lemoine NR, Wang Y. Oncolytic viral therapy and the immune system: a double-edged sword against cancer. Front. immunol.. 2018 Apr 26;9:866.
125. Parato KA, Breitbach CJ, Le Boeuf F, Wang J, Storbeck C, Ilkow C, et al. The oncolytic poxvirus JX-594 selectively replicates in and destroys cancer cells driven by genetic pathways commonly activated in cancers. Mol. Ther.. 2012 Apr 1;20(4):749-58.
126. Platanias LC. Mechanisms of type-I-and type-II-interferon-mediated signalling. Nat. Rev. Immunol. 2005 May;5(5):375-86.
127. Ma XY, Hill BD, Hoang T, Wen F. Virus-inspired strategies for cancer therapy. In Semin. Cancer Biol. 2021 Jun 26. Academic Press.
128. Uche IK, Kousoulas KG, Rider PJ. The Effect of Herpes Simplex Virus-Type-1 (HSV-1) Oncolytic Immunotherapy on the Tumor Microenvironment. Viruses. 2021 Jun 22;13(7):1200.
129. Hirata E, Sahai E. Tumor microenvironment and differential responses to therapy. Cold Spring Harb. Perspect. Med.. 2017 Jul 1;7(7):a026781.
130. Marchini A, Daeffler L, Pozdeev VI, Angelova A, Rommelaere J. Immune conversion of tumor microenvironment by oncolytic viruses: the protoparvovirus H-1PV case study. Front. immunol. 2019 Aug 7;10:1848.
131. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012 Mar 20;21(3):309-22.
132. Vähä-Koskela MJ, Heikkilä JE, Hinkkanen AE. Oncolytic viruses in cancer therapy. Cancer Lett.. 2007 Sep 8;254(2):178-216.
133. McKee TD, Grandi P, Mok W, Alexandrakis G, Insin N, Zimmer JP, et al. Degradation of fibrillar collagen in a human melanoma xenograft improves the efficacy of an oncolytic herpes simplex virus vector. Cancer Res.. 2006 Mar 1;66(5):2509-13.
134. Bhatt DK, Chammas R, Daemen T. Resistance Mechanisms Influencing Oncolytic Virotherapy, a Systematic Analysis. Vaccines. 2021 Oct 12;9(10):1166.
135. Marofi F, Motavalli R, Safonov VA, Thangavelu L, Yumashev AV, Alexander M, et al. CAR T cells in solid tumors: challenges and opportunities. Stem Cell Res. Ther.. 2021 Dec;12(1):1-6.
136. Kosti P, Maher J, Arnold JN. Perspectives on chimeric antigen receptor T-cell immunotherapy for solid tumors. Front. Immunol.. 2018 May 22;9:1104.
137. Li J, Li W, Huang K, Zhang Y, Kupfer G, Zhao Q. Chimeric antigen receptor T cell (CAR-T) immunotherapy for solid tumors: lessons learned and strategies for moving forward. J. Hematol. Oncol.. 2018 Dec;11(1):1-8.
138. Friedl P, Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell. 2011 Nov 23;147(5):992-1009.
139. Newick K, Moon E, Albelda SM. Chimeric antigen receptor T-cell therapy for solid tumors. Mol. Ther. Oncolytics. 2016 Jan 1;3:16006.
140. Wagner J, Wickman E, DeRenzo C, Gottschalk S. CAR T cell therapy for solid tumors: bright future or dark reality?. Mol. Ther.. 2020 Nov 4;28(11):2320-39.
141. DeBerardinis RJ. Tumor microenvironment, metabolism, and immunotherapy. N. Engl. J. Med.. 2020 Feb 27;382(9):869-71.
142. Huang J, Yu J, Tu L, Huang N, Li H, Luo Y. Isocitrate dehydrogenase mutations in glioma: from basic discovery to therapeutics development. Front Oncol. 2019 Jun 12;9:506.
143. Reiter-Brennan C, Semmler L, Klein A. The effects of 2-hydroxyglutarate on the tumorigenesis of gliomas. Contemp Oncol (Pozn). 2018 Jan 1;22(4):215-22.
144. Chen JH, Perry CJ, Tsui YC, Staron MM, Parish IA, Dominguez CX, et al. Prostaglandin E2 and programmed cell death 1 signaling coordinately impair CTL function and survival during chronic viral infection. Nat. Med.. 2015 Apr;21(4):327-34.
145. Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, et al. Inhibitory effect of tumor cell–derived lactic acid on human T cells. Blood. 2007 May 1;109(9):3812-9.
146. Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2, 3-dioxygenase. J. Exp. Med.. 2002 Aug 19;196(4):459-68.
147. Weber WP, Feder‐Mengus C, Chiarugi A, Rosenthal R, Reschner A, Schumacher R, et al. Differential effects of the tryptophan metabolite3‐hydroxyanthranilic acid on the proliferation of human CD8+ T cells induced by TCR triggering or homeostatic cytokines. Eur. J. Immunol.. 2006 Feb;36(2):296-304.
148. Fallarino F, Grohmann U, Vacca C, Bianchi R, Orabona C, Spreca A, et al. T cell apoptosis by tryptophan catabolism. Cell Death Differ.. 2002 Oct;9(10):1069-77.
149. Uyttenhove C, Pilotte L, Théate I, Stroobant V, Colau D, Parmentier N, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2, 3-dioxygenase. Nat. Med.. 2003 Oct;9(10):1269-74.
150. Munn DH, Mellor AL. Indoleamine 2, 3-dioxygenase and tumor-induced tolerance. J. Clin. Invest.. 2007 May 1;117(5):1147-54.
151. Ninomiya S, Narala N, Huye L, Yagyu S, Savoldo B, Dotti G, et al. Tumor indoleamine 2, 3-dioxygenase (IDO) inhibits CD19-CAR T cells and is downregulated by lymphodepleting drugs. Blood, Am. J. Hematol.. 2015 Jun 18;125(25):3905-16.
152. Benmebarek MR, Karches CH, Cadilha BL, Lesch S, Endres S, Kobold S. Killing mechanisms of chimeric antigen receptor (CAR) T cells. Int. J. Mol. Sci.. 2019 Mar 14;20(6):1283.
153. Kumaresan PR, Manuri PR, Albert ND, Maiti S, Singh H, Mi T, et al. Bioengineering T cells to target carbohydrate to treat opportunistic fungal infection. Proc. Natl. Acad. Sci. U.S.A.. 2014 Jul 22;111(29):10660-5.
154. Davenport AJ, Jenkins MR, Cross RS, Yong CS, Prince HM, Ritchie DS, et al. CAR-T Cells Inflict Sequential Killing of Multiple Tumor Target CellsIndividual CAR-T Cells Kill Multiple Tumor Targets. Cancer Immunol. Res.. 2015 May 1;3(5):483-94.
155. Koehler H, Kofler D, Hombach A, Abken H. CD28 Costimulation overcomes transforming growth factor-β–mediated repression of proliferation of redirected human CD4+ and CD8+ T Cells in an antitumor cell attack. Cancer Res.. 2007 Mar 1;67(5):2265-73.
156. Mamonkin M, Rouce RH, Tashiro H, Brenner MK. A T-cell–directed chimeric antigen receptor for the selective treatment of T-cell malignancies. Blood, Am. J. Hematol.. 2015 Aug 20;126(8):983-92.
Files | ||
Issue | Vol 5, No 1 (2022) | |
Section | Review Article | |
DOI | https://doi.org/10.18502/igj.v5i1.14065 | |
Keywords | ||
Surgery Chemotherapy Radiotherapy Various Immunotherapy Methods Virotherapy CAR T-Cell Therapy |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |