Immunology and Genetics Journal https://igj.tums.ac.ir/index.php/igj <p><strong>Immunology and Genetics&nbsp;Journal&nbsp;</strong>is the official journal of the<strong><a href="http://rcid.tums.ac.ir/"> Research Center For Immunodeficiencies</a>, Tehran University of Medical Sciences</strong>.&nbsp;The journal is a Quarterly peer-reviewed, Open Access journal, publishing high quality scientific (basic and translational) and clinical-epidemiological papers on a wide range of pediatric and adult genetics and immunological topics, including Clinical Genetics, Clinical Immunology, Infection and Immunity, Autoimmunity, Immunobiology, Immunogenetics, Immunohematology, Immunopathology, Transplantation, and Cancer immunology.</p> <p>The Journal is scientifically supported by <a href="https://usern.tums.ac.ir/">Universal Scientific Education and Research Network (USERN)</a>, and the following centers, associations, groups, and networks:</p> <ul> <li class="show"><a href="https://usern.tums.ac.ir/Group/Info/PIDNet">Primary Immunodeficiency Diseases Network (PIDNet)</a></li> <li class="show"><a href="https://usern.tums.ac.ir/Group/Info/NIIMA">Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)</a></li> <li class="show"><a href="https://usern.tums.ac.ir/Group/Info/CIP">Cancer Immunology Project (CIP)</a></li> <li class="show"><a href="https://usern.tums.ac.ir/Group/Info/Immuno_TACT">Immunology Board for Transplantation And Cell-based Therapeutics (ImmunoTACT)</a></li> <li class="show"><a href="https://usern.tums.ac.ir/Group/Info/SRMEG">Systematic Review and Meta-analysis Expert Group (SRMEG)</a></li> </ul> <p>&nbsp;</p> Tehran University of Medical Sciences en-US Immunology and Genetics Journal 2645-4831 Unraveling the M1R Protein of Monkeypox Virus: An Integrated Structural Bioinformatics, Immunological Profiling, and Molecular Dynamics Simulation Approach https://igj.tums.ac.ir/index.php/igj/article/view/210 <p class="s17"><strong><span class="s5">Background:&nbsp;</span></strong><span class="s5">Monkeypox virus (MPXV)&nbsp;</span><span class="s5">is a</span><span class="s5"> zoonotic pathogen </span><span class="s5">that influences</span><span class="s5"> humans </span><span class="s5">as well as</span><span class="s5"> animals</span><span class="s5">pos</span><span class="s5">ing</span><span class="s5"> a significant public health concern due to its emergence and circulation. </span><span class="s5">T</span><span class="s5">he structural dynamics and features of </span><span class="s5">several</span><span class="s5"> MPXV proteins, including M1R, </span><span class="s5">have not been completely studied</span><span class="s5">. </span></p> <p class="s17"><span class="s5"><strong>Methods:</strong> This </span><span class="s5">experiment</span><span class="s5"> focuses on the prediction and analysis of the secondary and tertiary constructs for</span><span class="s5">&nbsp;the M1R protein</span><span class="s5">.</span> <span class="s5">Briefly, its</span><span class="s5"> amino acid sequence </span><span class="s5">was collected</span><span class="s5"> from the </span><span class="s5">UniProt</span><span class="s5"> database. </span><span class="s5">A wide range of</span><span class="s5"> in silico approaches were employed, including </span><span class="s5">ProtParam</span><span class="s5">, SOPMA, PSIPRED, CD Search, </span><span class="s5">GalaxyTMB</span><span class="s5">, Robetta, I-TASSER, and GROMACS, </span><span class="s5">in order </span><span class="s5">to</span><span class="s5"> explore the physicochemical properties, structural features, and functional insights of the M1R protein. The tertiary structure models </span><span class="s5">were </span><span class="s5">evaluated</span><span class="s5"> to </span><span class="s5">detect</span><span class="s5"> the most reliable </span><span class="s5">solution</span><span class="s5">, which </span><span class="s5">was then used for</span><span class="s5">&nbsp;</span><span class="s5">I</span><span class="s5">mmunoinformatics analys</span><span class="s5">es such as </span><span class="s5">MHC I/II and B-cell epitope prediction using the IEDB and </span><span class="s5">Ellipro</span><span class="s5"> tools, respectively. </span><span class="s5">E</span><span class="s5">pitopes </span><span class="s5">from the M1R protein </span><span class="s5">were </span><span class="s5">evaluated</span><span class="s5"> based on antigenicity, affinity</span><span class="s5"> of binding</span><span class="s5">,</span><span class="s5"> along&nbsp;</span><span class="s5">solubility. </span><span class="s5">Furthermore</span><span class="s5">, active sites </span><span class="s5">were </span><span class="s5">forecast</span> <span class="s5">by the</span> <span class="s5">CASTp</span><span class="s5"> v3.0</span><span class="s5"> tool</span><span class="s5">.</span>&nbsp;</p> <p class="s17"><strong>Results:&nbsp;</strong><span class="s5">P</span><span class="s5">hysicochemical </span><span class="s5">calculations</span> <span class="s5">indicate</span><span class="s5"> that M1R </span><span class="s5">had favorable thermostability</span><span class="s5">&nbsp;and hydrophilic </span><span class="s5">features</span><span class="s5">. Structural </span><span class="s5">analyses</span> <span class="s5">suggested</span><span class="s5"> that M1R is a lipid membrane protein </span><span class="s5">component of</span><span class="s5"> DNA viruses,&nbsp;</span><span class="s5">suggesting</span><span class="s5"> it </span><span class="s5">as</span><span class="s5"> a</span> <span class="s5">robust</span> <span class="s5">antigenic target. </span><span class="s5">Immun</span><span class="s5">ogenicity analyses indicated</span> <span class="s5">it as a potentially</span> <span class="s5">suitable target</span><span class="s5"> for</span><span class="s5"> immunogenic protein design</span><span class="s5">. </span><span class="s5">As well</span><span class="s5">, molecular dynamics simulations (MDS)</span> <span class="s5">were </span><span class="s5">carried</span><span class="s5"> out</span><span class="s5"> for 100-ns</span><span class="s5"> using an all-atom forcefield</span><span class="s5">. </span><span class="s5">Analysis</span><span class="s5"> of </span><span class="s5">various molecular dynamics parameters of</span> <span class="s5">M1R throughout the </span><span class="s5">MDS trajectory,</span> <span class="s5">including</span><span class="s5"> RMSD, RMSF, </span><span class="s5">radius of gyration (</span><span class="s5">Rg</span><span class="s5">)</span><span class="s5">, and </span><span class="s5">solvent accessible surface area (</span><span class="s5">SASA</span><span class="s5">),</span> <span class="s5">indicated</span> <span class="s5">good</span><span class="s5"> stability of the M1R </span><span class="s5">and </span><span class="s5">unveiled</span><span class="s5"> imp</span><span class="s5">o</span><span class="s5">rtant </span><span class="s5">molecular dynamics </span><span class="s5">characteristics such as </span><span class="s5">the </span><span class="s5">flexibility of </span><span class="s5">certain</span><span class="s5"> protein regions</span><span class="s5">. </span></p> <p class="s17"><span class="s5"><strong>Conclusion:</strong>&nbsp;</span><span class="s5">Multiple</span><span class="s5"> epitopes </span><span class="s5">were detected in</span><span class="s5">&nbsp;</span><span class="s5">our</span> <span class="s5">experiment</span><span class="s5">,</span><span class="s5"> with</span> <span class="s5">12 B-cell epitopes </span><span class="s5">identified </span><span class="s5">using</span><span class="s5"> the Robetta model and 6 B-cell epitopes </span><span class="s5">predicted</span> <span class="s5">by</span><span class="s5"> the Galaxy model, alongside 3 MHC-I and 3 MHC-II epitopes,&nbsp;</span><span class="s5">which&nbsp;</span><span class="s5">scored favorably. </span><span class="s5">Results</span> <span class="s5">of the present </span><span class="s5">computational analysis</span> <span class="s5">provide clues to unleash</span> <span class="s5">the </span><span class="s5">potential</span><span class="s5"> of M1R as a</span><span class="s5">n</span> <span class="s5">immunotherapy</span><span class="s5"> target </span><span class="s5">for the development of antiviral </span><span class="s5">solutions against MPXV</span><span class="s5"> in the future.</span></p> Cena Aram Kiarash Saleki Amirreza Mazloomi Maryam Barancheshmeh Nima Rezaei ##submission.copyrightStatement## 2025-07-20 2025-07-20 Clinical relevance of high HHV-6B viral load in immunocompromised host https://igj.tums.ac.ir/index.php/igj/article/view/211 <p>The peculiarity of the chromosomally integrated form of human herpesvirus type 6 (ciHHV-6) is its wide distribution (up to 1% of the population), the possibility of transmission by inheritance, the problem of diagnosis, including issues of differential diagnosis with the acute form of HHV-6 infection, which, in turn, makes it difficult to resolve the problem of the therapy necessity. In addition, activation of ciHHV-6 is possible sometimes with acute infection clinical symptoms and the need for antiviral therapy, especially in patients after bone marrow transplantation and chemotherapy. We report a 10-years-old girl after chiasmal-sellar germinoma surgery and subsequent chemotherapy with ciHHV-6B. The child was treated with ganciclovir. This did not significantly influence the reduction of the viral load HHV-6B DNA in serum and cerebrospinal fluid. No adverse effects of antiviral treatment were registered. It’s important to exclude ciHHV-6 before the diagnosis of HHV-6 active disease is made, as this screening may prevent the unnecessary use of antivirals.</p> Elena Kishkurno Tamara Amvrosieva Evgeniy Dmitriev Katerina Divakova ##submission.copyrightStatement## 2025-07-20 2025-07-20