Comparison of Demographic and Clinical Characteristics among X-Linked and Autosomal Recessive Agammaglobulinemia
Abstract
Background: Congenital agammaglobulinemia is an inborn error of immunity, resulting in the impairment of effective antibody production. Agammaglobulinemia may be due to X-linked or autosomal genetic abnormalities. The primary defect in X-Linked agammaglobulinemia (XLA) and autosomal recessive agammaglobulinemia (ARAG) is the B cell precursors’ failure to mature B-lymphocytes and, ultimately, plasma cells. This study aims to evaluate the differences in clinical and paraclinical characteristics of XLA and ARAG patients.
Method: A total of 58 patients were enrolled in this retrospective study. The data were extracted from the Iranian primary immunodeficiency registry (IPIDR). Forty-eight of the patients were diagnosed with XLA, while the other ten were diagnosed with ARAG. Measures including demographic data, clinical manifestations, and laboratory data of the patients were compared between the groups.
Results: Patients with ARAG, presented manifestations at an earlier age and had a lower diagnosis delay compared to XLA patients. However, the mortality rate was not significantly affected. The pattern of organ involvement also differed between the two groups, as patients with ARAG showed manifestations that are more chronic in nature (e.g., autoimmunity, lymphoproliferation, and allergy). In contrast, XLA patients were more prone to infections and other associated complications (e.g., meningitis, sinusitis, diarrhea, and bronchiectasis). Meningitis was exclusively observed in the XLA group. The number of CD19+ B cells was significantly higher in the ARAG group (P=0.002), While the level of IgM was significantly higher in the XLA group (P=0.045).
Conclusion: Identifying the clinical presentations of XLA and ARAG, may assist clinicians in early diagnosis in the setting of limited available genetic studies.
2. Bruton OC. Agammaglobulinemia. Pediatrics. 1952;9(6):722-8.
3. Ochs HD, Smith C. X-linked agammaglobulinemia. A clinical and molecular analysis. Medicine. 1996;75(6):287-99.
4. Weiler CR, Bankers-Fulbright JL, editors. Common variable immunodeficiency: test indications and interpretations. Mayo Clin. Proc.; 2005: Elsevier.
5. Edwards ESJ, Bosco JJ, Ojaimi S, O'Hehir RE, van Zelm MC. Beyond monogenetic rare variants: tackling the low rate of genetic diagnoses in predominantly antibody deficiency. Cell. Mol. Immunol. 2021;18(3):588-603.
6. Conley ME, Rohrer J, Minegishi Y. X-linked agammaglobulinemia. Clin Rev Allergy Immunol 2000;19(2):183-204.
7. Tang P, Upton JE, Barton-Forbes MA, Salvadori MI, Clynick MP, Price AK, et al. Autosomal recessive agammaglobulinemia due to a homozygous mutation in PIK3R1. J Clin Immunol. 2018;38(1):88-95.
8. Arroyo-Martinez YM, Saindon M, Raina JS. X-linked Agammaglobulinemia Presenting with Multiviral Pneumonia. Cureus. 2020;12(4).
9. Arshi S, Nabavi M, Bemanian MH, Shakeri R, Taghvaei B, Ghalebaghi B, et al. Phenotyping and follow up of forty-seven Iranian patients with common variable immunodeficiency. Allergol Immunopathol. 2016;44(3):226-31.
10. Wakamatsu M, Muramatsu H, Kataoka S, Okuno Y, Yoshimi S, Nakajima Y, et al. Utility of newborn screening for severe combined immunodeficiency and X-Linked agammaglobulinemia using TREC and KREC assays. Hematol-Am Soc Hemat. Washington, DC; 2019.
11. Suri D, Rawat A, Singh S. X-linked Agammaglobulinemia. Indian J. Pediatr. 2016;83(4):331-7.
12. Broides A, Yang W, Conley ME. Genotype/phenotype correlations in X-linked agammaglobulinemia. Clin immunol. 2006;118(2-3):195-200.
13. Misbah S, Spickett G, Ryba P, Hockaday J, Kroll J, Sherwood C, et al. Chronic enteroviral meningoencephalitis in agammaglobulinemia: case report and literature review. J Clin Immunol. 1992;12(4):266-70.
14. Stewart DM, Tian L, Nelson DL. A case of X-linked agammaglobulinemia diagnosed in adulthood. Clini immunol. 2001;99(1):94-9.
15. Abolhassani H, Tavakol M, Chavoshzadeh Z, Mahdaviani SA, Momen T, Yazdani R, et al. National consensus on diagnosis and management guidelines for primary immunodeficiency. Immunol Genet J. 2019:1-21.
16. Conley ME, Dobbs AK, Farmer DM, Kilic S, Paris K, Grigoriadou S, et al. Primary B cell immunodeficiencies: comparisons and contrasts. Annu. Rev. Immunol. 2009;27:199-227.
17. Lederman HM, Winkelstein JA. X-linked agammaglobulinemia: an analysis of 96 patients. Medicine. 1985;64(3):145-56.
18. Moin M, Aghamohammadi A, Farhoudi A, Pourpak Z, Rezaei N, Movahedi M, et al. X‐linked agammaglobulinemia: a survey of 33 Iranian patients. Immunol Invest. 2004;33(1):81-93.
19. Winkelstein JA, Marino MC, Lederman HM, Jones SM, Sullivan K, Burks AW, et al. X-linked agammaglobulinemia: report on a United States registry of 201 patients. Medicine. 2006;85(4):193-202.
20. El-Sayed ZA, Abramova I, Aldave JC, Al-Herz W, Bezrodnik L, Boukari R, et al. X-linked agammaglobulinemia (XLA): Phenotype, diagnosis, and therapeutic challenges around the world. World Allergy Organ J 2019;12(3):100018.
21. Lee PP, Chen T-X, Jiang L-P, Chan K-W, Yang W, Lee B-W, et al. Clinical characteristics and genotype-phenotype correlation in 62 patients with X-linked agammaglobulinemia. World Allergy Organ J 2010;30(1):121-31.
22. López-Granados E, de Diego RP, Cerdán AF, Casariego GF, Rodríguez MCG. A genotype-phenotype correlation study in a group of 54 patients with X-linked agammaglobulinemia. J. Allergy Clin. Immunol. 2005;116(3):690-7.
23. Broides A, Yang W, Conley ME. Genotype/phenotype correlations in X-linked agammaglobulinemia. J. Clin. Immunol. 2006;118(2-3):195-200.
24. Conley ME, Broides A, Hernandez‐Trujillo V, Howard V, Kanegane H, Miyawaki T, et al. Genetic analysis of patients with defects in early B‐cell development. Immunol. Rev. 2005;203(1):216-34.
25. Mazhar M, Waseem M. Agammaglobulinemia. StatPearls 2020.
26. Al-Mousa H, Al-Saud B. Primary Immunodeficiency Diseases in Highly Consanguineous Populations from Middle East and North Africa: Epidemiology, Diagnosis, and Care. Front Immunol. 2017;8(678).
27. Pac M, Bernatowska EA, Kierkuś J, Ryżko JP, Cielecka-Kuszyk J, Jackowska T, et al. Gastrointestinal disorders next to respiratory infections as leading symptoms of X-linked agammaglobulinemia in children–34-year experience of a single center. Arch Med Sci. 2017;13(2):412.
28. Bagheri Y, Vosughi A, Azizi G, Yazdani R, Hafezi N, Alimorad S, et al. comparison of clinical and immunological features and mortality in common variable immunodeficiency and agammaglobulinemia patients. Immunol Lett. 2019;210:55-62.
29. Bryan BA, Battersby A, Shillitoe BMJ, Barge D, Bourne H, Flood T, et al. Respiratory health and related quality of life in patients with congenital agammaglobulinemia in the northern region of the UK. J Clin Immunol. 2016;36(5):472-9.
30. Winkelstein JA, Marino MC, Lederman HM, Jones SM, Sullivan K, Burks AW, et al. X-linked agammaglobulinemia: report on a United States registry of 201 patients. Medicine (Baltimore). 2006;85(4):193-202.
31. Quartier P, Foray S, Casanova J-L, Hau-Rainsard I, Blanche S, Fischer A. Enteroviral meningoencephalitis in X-linked agammaglobulinemia: intensive immunoglobulin therapy and sequential viral detection in cerebrospinal fluid by polymerase chain reaction. Pediatr Infect Dis J 2000;19(11):1106-8.
32. Van der Hilst J, Smits B, Van Der Meer J. Hypogammaglobulinaemia: cumulative experience in 49 patients in a tertiary care institution. Neth J Med. 2002;60(3):140-7.
33. Rawat A, Jindal AK, Suri D, Vignesh P, Gupta A, Saikia B, et al. Clinical and Genetic Profile of X-Linked Agammaglobulinemia: A Multicenter Experience From India. Front Immunol. 2020;11:612323.
Files | ||
Issue | Vol 4, No 1 (2021) | |
Section | Original Article | |
DOI | https://doi.org/10.18502/igj.v4i1.8394 | |
Keywords | ||
X-Linked Agammaglobulinemia Autosomal Agammaglobulinemia Bruton Inborn Errors of Immunity |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |