Unraveling the M1R Protein of Monkeypox Virus: An Integrated Structural Bioinformatics, Immunological Profiling, and Molecular Dynamics Simulation Approach
Deep in silico Analysis of Monkeypox M1R Protein
Abstract
Background: Monkeypox virus (MPXV) is a zoonotic pathogen that influences humans as well as animalsposing a significant public health concern due to its emergence and circulation. The structural dynamics and features of several MPXV proteins, including M1R, have not been completely studied.
Methods: This experiment focuses on the prediction and analysis of the secondary and tertiary constructs for the M1R protein. Briefly, its amino acid sequence was collected from the UniProt database. A wide range of in silico approaches were employed, including ProtParam, SOPMA, PSIPRED, CD Search, GalaxyTMB, Robetta, I-TASSER, and GROMACS, in order to explore the physicochemical properties, structural features, and functional insights of the M1R protein. The tertiary structure models were evaluated to detect the most reliable solution, which was then used for Immunoinformatics analyses such as MHC I/II and B-cell epitope prediction using the IEDB and Ellipro tools, respectively. Epitopes from the M1R protein were evaluated based on antigenicity, affinity of binding, along solubility. Furthermore, active sites were forecast by the CASTp v3.0 tool.
Results: Physicochemical calculations indicate that M1R had favorable thermostability and hydrophilic features. Structural analyses suggested that M1R is a lipid membrane protein component of DNA viruses, suggesting it as a robust antigenic target. Immunogenicity analyses indicated it as a potentially suitable target for immunogenic protein design. As well, molecular dynamics simulations (MDS) were carried out for 100-ns using an all-atom forcefield. Analysis of various molecular dynamics parameters of M1R throughout the MDS trajectory, including RMSD, RMSF, radius of gyration (Rg), and solvent accessible surface area (SASA), indicated good stability of the M1R and unveiled important molecular dynamics characteristics such as the flexibility of certain protein regions.
Conclusion: Multiple epitopes were detected in our experiment, with 12 B-cell epitopes identified using the Robetta model and 6 B-cell epitopes predicted by the Galaxy model, alongside 3 MHC-I and 3 MHC-II epitopes, which scored favorably. Results of the present computational analysis provide clues to unleash the potential of M1R as an immunotherapy target for the development of antiviral solutions against MPXV in the future.
Bunge EM, Hoet B, Chen L, Lienert F, Weidenthaler H, Baer LR, et al. The changing epidemiology of human monkeypox-A potential threat? A systematic review. PLoS Negl Trop Dis. 2022 Feb;16(2):e0010141.
Alakunle E, Moens U, Nchinda G, Okeke MI. Monkeypox Virus in Nigeria: Infection Biology, Epidemiology, and Evolution. Viruses. 2020;12(11).
Kumar S, Subramaniam G, Karuppanan K. Human monkeypox outbreak in 2022. J Med Virol. 2023;95(1):e27894.
Cho CT, Wenner HA. Monkeypox virus. Bacteriol Rev. 1973 Mar;37(1):1–18.
Patauner F, Gallo R, Durante-Mangoni E. Monkeypox infection: An update for the practicing physician. Eur J Intern Med. 2022 Oct;104:1–6.
Meo SA, Jawaid SA. Human Monkeypox: Fifty-Two Years based analysis and Updates. Pak J Med Sci. 2022;38(6):1416–9.
Ihekweazu C, Yinka-Ogunleye A, Lule S, Ibrahim A. Importance of epidemiological research of monkeypox: is incidence increasing? Vol. 18, Expert review of anti-infective therapy. England; 2020. p. 389–92.
Yinka-Ogunleye A, Aruna O, Dalhat M, Ogoina D, McCollum A, Disu Y, et al. Outbreak of human monkeypox in Nigeria in 2017-18: a clinical and epidemiological report. Lancet Infect Dis. 2019 Aug;19(8):872–9.
Bunge EM, Hoet B, Chen L, Lienert F, Weidenthaler H, Baer LR, et al. The changing epidemiology of human monkeypox-A potential threat? A systematic review. PLoS Negl Trop Dis. 2022 Feb;16(2):e0010141.
Beer EM, Rao VB. A systematic review of the epidemiology of human monkeypox outbreaks and implications for outbreak strategy. PLoS Negl Trop Dis. 2019 Oct;13(10):e0007791.
Ladnyj ID, Ziegler P, Kima E. A human infection caused by monkeypox virus in Basankusu Territory, Democratic Republic of the Congo. Bull World Health Organ. 1972;46(5):593–7.
Marennikova SS, Seluhina EM, Mal’ceva NN, Cimiskjan KL, Macevic GR. Isolation and properties of the causal agent of a new variola-like disease (monkeypox) in man. Bull World Health Organ. 1972;46(5):599–611.
Magnus P von, Andersen EK, Petersen KB, Birch-Andersen A. A POX-LIKE DISEASE IN CYNOMOLGUS MONKEYS. Acta Pathologica Microbiologica Scandinavica. 1959;46(2):156–76.
Parker S, Buller RM. A review of experimental and natural infections of animals with monkeypox virus between 1958 and 2012. Future Virol. 2013 Feb;8(2):129–57.
Guarner J, Johnson BJ, Paddock CD, Shieh WJ, Goldsmith CS, Reynolds MG, et al. Monkeypox transmission and pathogenesis in prairie dogs. Emerg Infect Dis. 2004 Mar;10(3):426–31.
Pastula DM, Tyler KL. An Overview of Monkeypox Virus and Its Neuroinvasive Potential. Ann Neurol. 2022 Oct;92(4):527–31.
Brown K, Leggat PA. Human Monkeypox: Current State of Knowledge and Implications for the Future. Trop Med Infect Dis. 2016 Dec;1(1).
Vivancos R, Anderson C, Blomquist P, Balasegaram S, Bell A, Bishop L, et al. Community transmission of monkeypox in the United Kingdom, April to May 2022. Euro Surveill. 2022 Jun;27(22).
Sepehrinezhad A, Ashayeri Ahmadabad R, Sahab-Negah S. Monkeypox virus from neurological complications to neuroinvasive properties: current status and future perspectives. J Neurol. 2023 Jan;270(1):101–8.
Sklenovská N. Monkeypox Virus. In: Malik YS, Singh RK, Dhama K, editors. Animal-Origin Viral Zoonoses. Singapore: Springer Singapore; 2020. p. 39–68.
Kandi V, Pal M, Mengstie F. Epidemiology, Diagnosis, and Control of Monkeypox Disease: A comprehensive Review. American journal of infectious diseases and Microbiology. 2017 May 22;5:94–9.
Huang Y, Mu L, Wang W. Monkeypox: epidemiology, pathogenesis, treatment and prevention. Signal Transduct Target Ther. 2022 Nov;7(1):373.
Grifoni A, Zhang Y, Tarke A, Sidney J, Rubiro P, Reina-Campos M, et al. Defining antigen targets to dissect vaccinia virus and monkeypox virus-specific T cell responses in humans. Cell Host Microbe. 2022 Dec;30(12):1662-1670.e4.
Wang Y, Yang K, Zhou H. Immunogenic proteins and potential delivery platforms for mpox virus vaccine development: A rapid review. Int J Biol Macromol. 2023 Aug;245:125515.
Yefet R, Friedel N, Tamir H, Polonsky K, Mor M, Cherry-Mimran L, et al. Monkeypox infection elicits strong antibody and B cell response against A35R and H3L antigens. iScience. 2023 Feb;26(2):105957.
Shchelkunov SN, Totmenin A V, Safronov PF, Mikheev M V, Gutorov V V, Ryazankina OI, et al. Analysis of the monkeypox virus genome. Virology. 2002 Jun;297(2):172–94.
Fang M, Cheng H, Dai Z, Bu Z, Sigal LJ. Immunization with a single extracellular enveloped virus protein produced in bacteria provides partial protection from a lethal orthopoxvirus infection in a natural host. Virology. 2006 Feb;345(1):231–43.
Papukashvili D, Rcheulishvili N, Liu C, Wang X, He Y, Wang PG. Strategy of developing nucleic acid-based universal monkeypox vaccine candidates. Front Immunol. 2022;13:1050309.
Ferdous J, Barek MA, Hossen MS, Bhowmik KK, Islam MS. A review on monkeypox virus outbreak: New challenge for world. Health Sci Rep. 2023 Jan;6(1):e1007.
Natami M, Gorgzadeh A, Gholipour A, Fatemi SN, Firouzeh N, Zokaei M, et al. An overview on mRNA-based vaccines to prevent monkeypox infection. J Nanobiotechnology. 2024 Mar;22(1):86.
Rezaei N. Clinical Immunology. Academic Press; 2022.
Saleki K, Alijanizadeh P, Azadmehr A. Is neuropilin-1 the neuroimmune initiator of multi-system hyperinflammation in COVID-19? Biomedicine & Pharmacotherapy. 2023;167:115558.
Saleki K, Mohamadi MH, Alijanizadeh P, Rezaei N. Neurological adverse effects of chimeric antigen receptor T-cell therapy. Expert Rev Clin Immunol. 2023;19(11):1361–83.
P. DN, Joseph D, N. CA, Neil S, L. MD, Eric B, et al. Vaccine Effectiveness of JYNNEOS against Mpox Disease in the United States. New England Journal of Medicine. 2023 Jun;388(26):2434–43.
Nalca A, Zumbrun EE. ACAM2000: the new smallpox vaccine for United States Strategic National Stockpile. Drug Des Devel Ther. 2010 May;4:71–9.
Garcia-Atutxa I, Mondragon-Teran P, Huerta-Saquero A, Villanueva-Flores F. Advancements in monkeypox vaccines development: a critical review of emerging technologies. Front Immunol. 2024;15:1456060.
Aram C, Alijanizadeh P, Saleki K, Karami L. Development of an ancestral DC and TLR4-inducing multi-epitope peptide vaccine against the spike protein of SARS-CoV and SARS-CoV-2 using the advanced immunoinformatics approaches. Biochem Biophys Rep. 2024;39:101745.
Saleki K, Payandeh P, Shakeri M, Pourahmad R, Banazadeh M, Alijanizadeh P. Utilizing Immunoinformatics to Target Brain Tumors; An Aid t o Current Neurosurgical Practice. Interv. Pain Med Neuromodulation. 2022;2(1).
Saleki K, Aram C, Alijanizadeh P, Khanmirzaei MH, Vaziri Z, Ramzankhah M, et al. Matrix metalloproteinase/Fas ligand (MMP/FasL) interaction dynamics in COVID-19: An in silico study and neuroimmune perspective. Heliyon. 2024;10(10).
Saleki K, Alijanizadeh P, Javanmehr N, Rezaei N. The role of Toll‐like receptors in neuropsychiatric disorders: Immunopathology, treatment, and management. Med Res Rev. 2024;44(3):1267–325.
Saleki K, Shirzad M, Javanian M, Mohammadkhani S, Alijani MH, Miri N, et al. Serum soluble Fas ligand is a severity and mortality prognostic marker for COVID-19 patients. Front Immunol. 2022;13:947401.
Saleki K, Mohamadi MH, Banazadeh M, Alijanizadeh P, Javanmehr N, Pourahmad R, et al. In silico design of a TLR4-mediating multiepitope chimeric vaccine against amyotrophic lateral sclerosis via advanced immunoinformatics. J Leukoc Biol. 2022;112(5):1191–207.
Saleki K, Alijanizade P, Moradi S, Rahmani A, Banazadeh M, Mohamadi MH, et al. Engineering a novel immunogenic chimera protein utilizing bacterial infections associated with atherosclerosis to induce a deviation in adaptive immune responses via Immunoinformatics approaches. Infection, Genetics and Evolution. 2022;102:105290.
Rahmani A, Baee M, Saleki K, Moradi S, Nouri HR. Applying high throughput and comprehensive immunoinformatics approaches to design a trivalent subunit vaccine for induction of immune response against emerging human coronaviruses SARS-CoV, MERS-CoV and SARS-CoV-2. J Biomol Struct Dyn. 2022;40(13):6097–113.
pmc_168970.
Buchan DWA, Moffat L, Lau A, Kandathil SM, Jones DT. Deep learning for the PSIPRED Protein Analysis Workbench. Nucleic Acids Res. 2024;gkae328.
Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol. 2021 Jun;38(7):3022–7.
Ko J, Park H, Heo L, Seok C. GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res. 2012;40(W1):W294–7.
Lee GR, Won J, Heo L, Seok C. GalaxyRefine2: simultaneous refinement of inaccurate local regions and overall protein structure. Nucleic Acids Res. 2019;47(W1):W451–5.
Del Conte A, Camagni GF, Clementel D, Minervini G, Monzon AM, Ferrari C, et al. RING 4.0: faster residue interaction networks with novel interaction types across over 35,000 different chemical structures. Nucleic Acids Res. 2024;gkae337.
Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC. GROMACS: fast, flexible, and free. J Comput Chem. 2005 Dec;26(16):1701–18.
Ponomarenko J, Bui HH, Li W, Fusseder N, Bourne PE, Sette A, et al. ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics. 2008 Dec;9:514.
Doytchinova IA, Flower DR. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics. 2007 Jan;8:4.
Dimitrov I, Bangov I, Flower DR, Doytchinova I. AllerTOP v.2--a server for in silico prediction of allergens. J Mol Model. 2014 Jun;20(6):2278.
Magnan CN, Randall A, Baldi P. SOLpro: accurate sequence-based prediction of protein solubility. Bioinformatics. 2009 Sep;25(17):2200–7.
Aram C, Alijanizadeh P, Saleki K, Karami L. Development of an ancestral DC and TLR4-inducing multi-epitope peptide vaccine against the spike protein of SARS-CoV and SARS-CoV-2 using the advanced immunoinformatics approaches. Biochem Biophys Rep. 2024;39:101745.
Tian W, Chen C, Lei X, Zhao J, Liang J. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res. 2018;46(W1):W363–7.
Sagdat K, Batyrkhan A, Kanayeva D. Exploring monkeypox virus proteins and rapid detection techniques. Front Cell Infect Microbiol. 2024;14:1414224.
Su HP, Garman SC, Allison TJ, Fogg C, Moss B, Garboczi DN. The 1.51-Angstrom structure of the poxvirus L1 protein, a target of potent neutralizing antibodies. Proc Natl Acad Sci U S A. 2005 Mar;102(12):4240–5.
Tang D, Liu X, Lu J, Fan H, Xu X, Sun K, et al. Recombinant proteins A29L, M1R, A35R, and B6R vaccination protects mice from mpox virus challenge. Front Immunol. 2023;14.
Foo CH, Lou H, Whitbeck JC, Ponce-de-León M, Atanasiu D, Eisenberg RJ, et al. Vaccinia virus L1 binds to cell surfaces and blocks virus entry independently of glycosaminoglycans. Virology. 2009 Mar;385(2):368–82.
Ren Z, Li M, Chen J, Gong X, Song S, Li D, et al. Identification of mpox M1R and B6R monoclonal and bispecific antibodies that efficiently neutralize authentic mpox virus. Emerg Microbes Infect. 2024 Dec;13(1):2401931.
Franceschi V, Parker S, Jacca S, Crump RW, Doronin K, Hembrador E, et al. BoHV-4-Based Vector Single Heterologous Antigen Delivery Protects STAT1(-/-) Mice from Monkeypoxvirus Lethal Challenge. PLoS Negl Trop Dis. 2015 Jun;9(6):e0003850.
Tang D, Liu X, Lu J, Fan H, Xu X, Sun K, et al. Recombinant proteins A29L, M1R, A35R, and B6R vaccination protects mice from mpox virus challenge. Front Immunol. 2023;14.
Hou F, Zhang Y, Liu X, Murad Y, Xu J, Yu Z, et al. Novel mRNA vaccines encoding Monkeypox virus M1R and A35R protect mice from a lethal virus challenge. bioRxiv. 2022;
Li E, Gong Q, Zhang J, Guo X, Xie W, Chen D, et al. An mpox quadrivalent mRNA vaccine protects mice from lethal vaccinia virus challenge. Antiviral Res. 2024;230:105974.
Ye T, Zhou J, Guo C, Zhang K, Wang Y, Liu Y, et al. Polyvalent mpox mRNA vaccines elicit robust immune responses and confer potent protection against vaccinia virus. Cell Rep. 2024;43(6).
Senkevich TG, White CL, Koonin E V, Moss B. Complete pathway for protein disulfide bond formation encoded by poxviruses. Proc Natl Acad Sci U S A. 2002 May;99(10):6667–72.
Wolffe EJ, Vijaya S, Moss B. A myristylated membrane protein encoded by the vaccinia virus L1R open reading frame is the target of potent neutralizing monoclonal antibodies. Virology. 1995 Aug;211(1):53–63.
Wolffe EJ, Vijaya S, Moss B. A myristylated membrane protein encoded by the vaccinia virus L1R open reading frame is the target of potent neutralizing monoclonal antibodies. Virology. 1995 Aug;211(1):53–63.
Su HP, Golden JW, Gittis AG, Hooper JW, Garboczi DN. Structural basis for the binding of the neutralizing antibody, 7D11, to the poxvirus L1 protein. Virology. 2007 Nov;368(2):331–41.
Meszaros B, Park E, Malinverni D, Sejdiu BI, Immadisetty K, Sandhu M, et al. Recent breakthroughs in computational structural biology harnessing the power of sequences and structures. Curr Opin Struct Biol. 2023 Jun;80:102608.
Vishweshwaraiah YL, Dokholyan N V. Toward rational vaccine engineering. Adv Drug Deliv Rev. 2022 Apr;183:114142.
Maryam Barancheshmeh, Hossein Najafzadehvarzi, Naser Shokrzadeh CA. Comparative Analysis of Fennel Essential Oil and Manganese in PCOS Rat Model via modulating miR-145 Expression and Structure-Based Virtual Screening of IGF2R Protein to Address Insulin Resistance and Obesity. Obes Med. 2024;
Chaudary, A. S., Guo, Y., Utkin, Y. N., Barancheshmeh, M., Dagda, R. K., & Gasanoff ES. Sphingomyelin Inhibits Hydrolytic Activity of Heterodimeric PLA2 in Model Myelin Membranes: Pharmacological Relevance. J Membr Biol. 2024;1–18.
Rahman MF, Hasan R, Biswas MS, Shathi JH, Hossain MF, Yeasmin A, et al. A bioinformatics approach to characterize a hypothetical protein Q6S8D9_SARS of SARS-CoV. Genomics Inform. 2023 Mar;21(1):e3.
Suleman M, Rashid F, Ali S, Sher H, Luo S, Xie L, et al. Immunoinformatic-based design of immune-boosting multiepitope subunit vaccines against monkeypox virus and validation through molecular dynamics and immune simulation. Front Immunol. 2022;13:1042997.
Saleki K, Aram C, Alijanizadeh P, Khanmirzaei MH, Vaziri Z, Ramzankhah M, et al. Matrix metalloproteinase/Fas ligand (MMP/FasL) interaction dynamics in COVID-19: An in silico study and neuroimmune perspective. Heliyon. 2024 May 30;10(10).
Elalouf A. In-silico Structural Modeling of Human Immunodeficiency Virus Proteins. Biomed Eng Comput Biol. 2023;14:11795972231154402.
Taidi L, Maurady A, Britel MR. Molecular docking study and molecular dynamic simulation of human cyclooxygenase-2 (COX-2) with selected eutypoids. J Biomol Struct Dyn. 2022 Feb;40(3):1189–204.
Kong T, Du P, Ma R, Wang H, Ma X, Lu J, et al. Single-chain A35R-M1R-B6R trivalent mRNA vaccines protect mice against both mpox virus and vaccinia virus. EBioMedicine. 2024 Nov;109.
Saleki K, Payandeh P, Shakeri M, Pourahmad R, Banazadeh M, Alijanizadeh P, et al. Utilizing immunoinformatics to target brain tumors; an aid to current neurosurgical practice. Interventional Pain Medicine and Neuromodulation. 2022;2(1).
Saleki K, Banazadeh M, Saghazadeh A, Rezaei N. Aging, testosterone, and neuroplasticity: friend or foe? Rev Neurosci. 2023;34(3):247–73.
Aram C, Alijanizadeh P, Saleki K, Karami L. Development of an ancestral DC and TLR4-inducing multi-epitope peptide vaccine against the spike protein of SARS-CoV and SARS-CoV-2 using the advanced immunoinformatics approaches. Biochem Biophys Rep. 2024;39:101745.
Saleki K, Mohamadi MH, Alijanizadeh P, Rezaei N. Neurological adverse effects of chimeric antigen receptor T-cell therapy. Expert Rev Clin Immunol. 2023;19(11):1361–83.
Saleki K, Payandeh P, Shakeri M, Pourahmad R, Banazadeh M, Alijanizadeh P, et al. Utilizing immunoinformatics to target brain tumors; an aid to current neurosurgical practice. Interventional Pain Medicine and Neuromodulation. 2022;2(1).
Saleki K, Aram C, Alijanizadeh P, Khanmirzaei MH, Vaziri Z, Ramzankhah M, et al. Matrix metalloproteinase/Fas ligand (MMP/FasL) interaction dynamics in COVID-19: An in silico study and neuroimmune perspective. Heliyon. 2024;10(10).
Mohseni Afshar Z, Babazadeh A, Janbakhsh A, Afsharian M, Saleki K, Barary M, et al. Vaccine‐induced immune thrombotic thrombocytopenia after vaccination against Covid‐19: a clinical dilemma for clinicians and patients. Rev Med Virol. 2022;32(2):e2273.
Vaziri Z, Saleki K, Aram C, Alijanizadeh P, Pourahmad R, Azadmehr A, et al. Empagliflozin treatment of cardiotoxicity: A comprehensive review of clinical, immunobiological, neuroimmune, and therapeutic implications. Biomedicine & Pharmacotherapy. 2023;168:115686.
Aram C, Alijanizadeh P, Saleki K, Karami L. Development of an ancestral DC and TLR4-inducing multi-epitope peptide vaccine against the spike protein of SARS-CoV and SARS-CoV-2 using the advanced immunoinformatics approaches. Biochem Biophys Rep. 2024;39:101745.
Rahmani A, Baee M, Saleki K, Moradi S, Nouri HR. Applying high throughput and comprehensive immunoinformatics approaches to design a trivalent subunit vaccine for induction of immune response against emerging human coronaviruses SARS-CoV, MERS-CoV and SARS-CoV-2. J Biomol Struct Dyn. 2022;40(13):6097–113.
Saleki K, Mohamadi MH, Banazadeh M, Alijanizadeh P, Javanmehr N, Pourahmad R, et al. In silico design of a TLR4-mediating multiepitope chimeric vaccine against amyotrophic lateral sclerosis via advanced immunoinformatics. J Leukoc Biol. 2022;112(5):1191–207.
Saleki K, Shirzad M, Javanian M, Mohammadkhani S, Alijani MH, Miri N, et al. Serum soluble Fas ligand is a severity and mortality prognostic marker for COVID-19 patients. Front Immunol. 2022;13:947401.
Saleki K, Alijanizade P, Moradi S, Rahmani A, Banazadeh M, Mohamadi MH, et al. Engineering a novel immunogenic chimera protein utilizing bacterial infections associated with atherosclerosis to induce a deviation in adaptive immune responses via Immunoinformatics approaches. Infection, Genetics and Evolution. 2022;102:105290.
Saleki K, Alijanizadeh P, Javanmehr N, Rezaei N. The role of Toll‐like receptors in neuropsychiatric disorders: Immunopathology, treatment, and management. Med Res Rev. 2024;44(3):1267–325.
Maurya VK, Kumar S, Maurya S, Ansari S, Paweska JT, Abdel-Moneim AS, et al. Structure-based drug designing for potential antiviral activity of selected natural product against Monkeypox (Mpox) virus and its host targets. Virusdisease. 2024;1–20.
Latifi R, Azadmehr A, Mosalla S, Saleki K, Hajiaghaee R. Scolicidal effects of the Nicotiana tabacum L. extract at various concentrations and exposure times. J Med Plants. 2022;21(82):111–8.
Alizadehmoghaddam S, Pourabdolhossein F, Najafzadehvarzi H, Sarbishegi M, Saleki K, Nouri HR. Crocin attenuates the lipopolysaccharide-induced neuroinflammation via expression of AIM2 and NLRP1 inflammasome in an experimental model of Parkinson’s disease. Heliyon. 2024;10(3).
Saleki K, Payandeh P, Shakeri M, Pourahmad R, Banazadeh M, Alijanizadeh P. Utilizing Immunoinformatics to Target Brain Tumors; An Aid t o Current Neurosurgical Practice. Interv. Pain Med Neuromodulation. 2022;2(1).
Vaziri Z, Saleki K, Aram C, Alijanizadeh P, Pourahmad R, Azadmehr A, et al. Empagliflozin treatment of cardiotoxicity: A comprehensive review of clinical, immunobiological, neuroimmune, and therapeutic implications. Biomedicine & Pharmacotherapy. 2023;168:115686.
Saleki K, Banazadeh M, Saghazadeh A, Rezaei N. Aging, testosterone, and neuroplasticity: friend or foe? Rev Neurosci. 2023;34(3):247–73.
Kaur M, Sharma A, Kaur H, Singh M, Devi B, Naresh Raj AR, et al. Screening of potential inhibitors against structural proteins from Monkeypox and related viruses of Poxviridae family via docking and molecular dynamics simulation. J Biomol Struct Dyn. 2023 Sep;1–16.
Suleman M, Rashid F, Ali S, Sher H, Luo S, Xie L, et al. Immunoinformatic-based design of immune-boosting multiepitope subunit vaccines against monkeypox virus and validation through molecular dynamics and immune simulation. Front Immunol. 2022;13:1042997.
| Files | ||
| Issue | Vol 8, No 4 (2025) | |
| Section | Original Article | |
| DOI | https://doi.org/10.18502/igj.v8i4.20099 | |
| Keywords | ||
| Monkeypox Structural Immunology Molecular mechanics Molecular dynamic simulation M1R protein | ||
| Rights and permissions | |
|
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |

