Review Article

The Role of Epigenetics in Multiple Sclerosis

Abstract

Multiple sclerosis (MS), an autoimmune chronic inflammatory, demyelinating disease, has affected over 2.5 million people in the world, who are mostly in young adulthood ages. As the burden of this disease would highly influence the socioeconomic status of the societies, as well as the patient’s quality of life, any progress in better understanding the pathophysiology of this disease would be valuable.
MS is caused by a series of cell-mediated immune mechanisms involving CD4+ T-cell reactivation against CNS. Also, as the involvement of both innate and acquired immunities, different risk factors have been proposed for MS. Environmental factors such as smoking, Epstein-Barr virus infection, sun exposure and vitamin D, body mass index, gut microbiota, and melatonin disturbance may affect gene expression patterns through epigenetic changes, and therefore, play roles in disease occurrence. These epigenetic changes could be categorized as alterations in DNA methylation, histone modifications, and non-coding RNAs. Moreover, the reversibility of these epigenetic changes could potentially be considered therapeutic targets. Therefore, several experimental and preclinical studies have investigated medications for reversing the pathologic epigenetic changes in MS. Accordingly, the current review was conducted to gather the current findings on the role of epigenetics in the pathophysiology and also treatment of MS.

1. Trapp BD, Nave KA. Multiple sclerosis: an immune or neurodegenerative disorder? Annual review of neuroscience. 2008;31:247-69.
2. Kurtzke JF. Epidemiology of multiple sclerosis. Does this really point toward an etiology? Lectio Doctoralis. Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology. 2000;21(6):383-403.
3. Sawcer S, Hellenthal G, Pirinen M, Spencer CC, Patsopoulos NA, Moutsianas L, et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature. 2011;476(7359):214-9.
4. Ye F, Wang T, Wu X, Liang J, Li J, Sheng W. N6-Methyladenosine RNA modification in cerebrospinal fluid as a novel potential diagnostic biomarker for progressive multiple sclerosis. Journal of Translational Medicine. 2021;19(1):1-14.
5. Kofahi RM, Kofahi HM, Sabaheen S, Qawasmeh MA, Momani A, Yassin A, et al. Prevalence of seropositivity of selected herpesviruses in patients with multiple sclerosis in the North of Jordan. BMC neurology. 2020;20(1):1-8.
6. Hojati Z. Molecular Genetic and Epigenetic Basis of Multiple Sclerosis. Advances in experimental medicine and biology. 2017;958:65-90.
7. Lassmann H, Bruck W, Lucchinetti CF. The immunopathology of multiple sclerosis: an overview. Brain pathology (Zurich, Switzerland). 2007;17(2):210-8.
8. Segal BM, Cohen JA, Antel J. Americas Committee for Treatment and Research in Multiple Sclerosis Forum 2017: Environmental factors, genetics, and epigenetics in MS susceptibility and clinical course. Multiple sclerosis (Houndmills, Basingstoke, England). 2018;24(1):4-5.
9. Sadovnick AD, Baird PA. The familial nature of multiple sclerosis: age-corrected empiric recurrence risks for children and siblings of patients. Neurology. 1988;38(6):990-1.
10. Didonna A, Oksenberg JR. Genetic determinants of risk and progression in multiple sclerosis. Clinica chimica acta; international journal of clinical chemistry. 2015;449:16-22.
11. Patsopoulos NA, Baranzini SE, Santaniello A, Shoostari P, Cotsapas C, Wong G, et al. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science. 2019;365(6460).
12. Patsopoulos NA, Esposito F, Reischl J, Lehr S, Bauer D, Heubach J, et al. Genome-wide meta-analysis identifies novel multiple sclerosis susceptibility loci. Ann Neurol. 2011;70(6):897-912.
13. Baranzini SE, Mudge J, Van Velkinburgh JC, Khankhanian P, Khrebtukova I, Miller NA, et al. Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. Nature. 2010;464(7293):1351.
14. Baranzini SE, Nickles D. Genetics of multiple sclerosis: swimming in an ocean of data. Current opinion in neurology. 2012;25(3):239-45.
15. Consortium*† IMSG, ANZgene, IIBDGC, WTCCC2. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science. 2019;365(6460):eaav7188.
16. Voskuhl RR, Sawalha AH, Itoh Y. Sex chromosome contributions to sex differences in multiple sclerosis susceptibility and progression. Multiple sclerosis (Houndmills, Basingstoke, England). 2018;24(1):22-31.
17. Huynh JL, Casaccia P. Epigenetic mechanisms in multiple sclerosis: implications for pathogenesis and treatment. The Lancet Neurology. 2013;12(2):195-206.
18. Koch MW, Metz LM, Kovalchuk O. Epigenetic changes in patients with multiple sclerosis. Nature reviews Neurology. 2013;9(1):35-43.
19. Simon KC, Munger KL, Ascherio A. XVI European Charcot Foundation lecture: nutrition and environment: can MS be prevented? Journal of the neurological sciences. 2011;311(1-2):1-8.
20. Zheleznyakova GY, Piket E, Marabita F, Pahlevan Kakhki M, Ewing E, Ruhrmann S, et al. Epigenetic research in multiple sclerosis: progress, challenges, and opportunities. Physiological genomics. 2017;49(9):447-61.
21. Kaminsky ZA, Tang T, Wang S-C, Ptak C, Oh GH, Wong AH, et al. DNA methylation profiles in monozygotic and dizygotic twins. Nature genetics. 2009;41(2):240.
22. Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes & development. 2009;23(7):781-3.
23. Fuh-Ngwa V, Zhou Y, Melton PE, van der Mei I, Charlesworth JC, Lin X, et al. Ensemble machine learning identifies genetic loci associated with future worsening of disability in people with multiple sclerosis. Scientific Reports. 2022;12(1):19291.
24. Bestor TH. The DNA methyltransferases of mammals. Human molecular genetics. 2000;9(16):2395-402.
25. Jakovcevski M, Akbarian S. Epigenetic mechanisms in neurological disease. Nature medicine. 2012;18(8):1194-204.
26. Zoghbi HY, Beaudet AL. Epigenetics and Human Disease. Cold Spring Harbor perspectives in biology. 2016;8(2):a019497.
27. Graves M, Benton M, Lea R, Boyle M, Tajouri L, MacArtney-Coxson D, et al. Methylation differences at the HLA-DRB1 locus in CD4+ T-Cells are associated with multiple sclerosis. Multiple Sclerosis Journal. 2014;20(8):1033-41.
28. Maltby VE, Lea RA, Sanders KA, White N, Benton MC, Scott RJ, et al. Differential methylation at MHC in CD4+ T cells is associated with multiple sclerosis independently of HLA-DRB1. Clinical epigenetics. 2017;9(1):71.
29. Maltby VE, Graves MC, Lea RA, Benton MC, Sanders KA, Tajouri L, et al. Genome-wide DNA methylation profiling of CD8+ T cells shows a distinct epigenetic signature to CD4+ T cells in multiple sclerosis patients. Clin Epigenetics. 2015;7:118.
30. Bos SD, Page CM, Andreassen BK, Elboudwarej E, Gustavsen MW, Briggs F, et al. Genome-wide DNA methylation profiles indicate CD8+ T cell hypermethylation in multiple sclerosis. PLoS One. 2015;10(3):e0117403.
31. Kulakova OG, Kabilov MR, Danilova LV, Popova EV, Baturina OA, Tsareva EY, et al. Whole-Genome DNA Methylation Analysis of Peripheral Blood Mononuclear Cells in Multiple Sclerosis Patients with Different Disease Courses. Acta naturae. 2016;8(3):103-10.
32. Dunaeva M, Derksen M, Pruijn GJM. LINE-1 Hypermethylation in Serum Cell-Free DNA of Relapsing Remitting Multiple Sclerosis Patients. Mol Neurobiol. 2018;55(6):4681-8.
33. Neven KY, Piola M, Angelici L, Cortini F, Fenoglio C, Galimberti D, et al. Repetitive element hypermethylation in multiple sclerosis patients. BMC Genet. 2016;17(1):84.
34. Chomyk AM, Volsko C, Tripathi A, Deckard SA, Trapp BD, Fox RJ, et al. DNA methylation in demyelinated multiple sclerosis hippocampus. Scientific reports. 2017;7(1):8696.
35. Field J, Fox A, Jordan MA, Baxter AG, Spelman T, Gresle M, et al. Interleukin-2 receptor-alpha proximal promoter hypomethylation is associated with multiple sclerosis. Genes Immun. 2017;18(2):59-66.
36. Sokratous M, Dardiotis E, Bellou E, Tsouris Z, Michalopoulou A, Dardioti M, et al. CpG Island Methylation Patterns in Relapsing-Remitting Multiple Sclerosis. Journal of molecular neuroscience : MN. 2018;64(3):478-84.
37. Calabrese R, Valentini E, Ciccarone F, Guastafierro T, Bacalini MG, Ricigliano VA, et al. TET2 gene expression and 5-hydroxymethylcytosine level in multiple sclerosis peripheral blood cells. Biochimica et biophysica acta. 2014;1842(7):1130-6.
38. Fagone P, Mangano K, Di Marco R, Touil-Boukoffa C, Chikovan T, Signorelli S, et al. Expression of DNA methylation genes in secondary progressive multiple sclerosis. J Neuroimmunol. 2016;290:66-9.
39. Datta A, Akatsu H, Heese K, Sze SK. Quantitative clinical proteomic study of autopsied human infarcted brain specimens to elucidate the deregulated pathways in ischemic stroke pathology. Journal of proteomics. 2013;91:556-68.
40. Calabrese R, Zampieri M, Mechelli R, Annibali V, Guastafierro T, Ciccarone F, et al. Methylation-dependent PAD2 upregulation in multiple sclerosis peripheral blood. Multiple Sclerosis Journal. 2012;18(3):299-304.
41. Mo X-B, Lei S-F, Qian Q-Y, Guo Y-F, Zhang Y-H, Zhang H. Integrative analysis revealed potential causal genetic and epigenetic factors for multiple sclerosis. Journal of Neurology. 2019;266(11):2699-709.
42. Moyon S, Casaccia P. DNA methylation in oligodendroglial cells during developmental myelination and in disease. Neurogenesis. 2017;4(1):e1270381.
43. Didonna A, Canto Puig E, Ma Q, Matsunaga A, Ho B, Caillier SJ, et al. Ataxin-1 regulates B cell function and the severity of autoimmune experimental encephalomyelitis. Proceedings of the National Academy of Sciences. 2020;117(38):23742-50.
44. Ma Q, Oksenberg JR, Didonna A. Epigenetic control of ataxin‐1 in multiple sclerosis. Annals of clinical and translational neurology. 2022;9(8):1186-94.
45. Axisa P-P, Yoshida TM, Lucca LE, Kasler HG, Lincoln MR, Pham GH, et al. A multiple sclerosis–protective coding variant reveals an essential role for HDAC7 in regulatory T cells. Science Translational Medicine. 2022;14(675):eabl3651.
46. Jhelum P, Santos-Nogueira E, Teo W, Haumont A, Lenoël I, Stys PK, et al. Ferroptosis mediates cuprizone-induced loss of oligodendrocytes and demyelination. Journal of Neuroscience. 2020;40(48):9327-41.
47. Cui Y, Zhang Z, Zhou X, Zhao Z, Zhao R, Xu X, et al. Microglia and macrophage exhibit attenuated inflammatory response and ferroptosis resistance after RSL3 stimulation via increasing Nrf2 expression. Journal of neuroinflammation. 2021;18(1):1-15.
48. Kapralov AA, Yang Q, Dar HH, Tyurina YY, Anthonymuthu TS, Kim R, et al. Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. Nature chemical biology. 2020;16(3):278-90.
49. Mou Y, Wang J, Wu J, He D, Zhang C, Duan C, et al. Ferroptosis, a new form of cell death: opportunities and challenges in cancer. Journal of hematology & oncology. 2019;12(1):1-16.
50. Cao Y, Li Y, He C, Yan F, Li J-R, Xu H-Z, et al. Selective ferroptosis inhibitor liproxstatin-1 attenuates neurological deficits and neuroinflammation after subarachnoid hemorrhage. Neuroscience bulletin. 2021;37(4):535-49.
51. Ge H, Xue X, Xian J, Yuan L, Wang L, Zou Y, et al. Ferrostatin-1 alleviates white matter injury via decreasing ferroptosis following spinal cord injury. Molecular Neurobiology. 2022;59(1):161-76.
52. Qu W, Cheng Y, Peng W, Wu Y, Rui T, Luo C, et al. Targeting iNOS Alleviates Early Brain Injury After Experimental Subarachnoid Hemorrhage via Promoting Ferroptosis of M1 Microglia and Reducing Neuroinflammation. Molecular Neurobiology. 2022;59(5):3124-39.
53. Meijer M, Agirre E, Kabbe M, van Tuijn CA, Heskol A, Zheng C, et al. Epigenomic priming of immune genes implicates oligodendroglia in multiple sclerosis susceptibility. Neuron. 2022;110(7):1193-210. e13.
54. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. cell. 2004;116(2):281-97.
55. Chang T-C, Mendell JT. microRNAs in vertebrate physiology and human disease. Annu Rev Genomics Hum Genet. 2007;8:215-39.
56. Junker A, Krumbholz M, Eisele S, Mohan H, Augstein F, Bittner R, et al. MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. Brain : a journal of neurology. 2009;132(Pt 12):3342-52.
57. Mancuso R, Hernis A, Agostini S, Rovaris M, Caputo D, Clerici M. MicroRNA-572 expression in multiple sclerosis patients with different patterns of clinical progression. Journal of translational medicine. 2015;13(1):148.
58. Huang Q, Xiao B, Ma X, Qu M, Li Y, Nagarkatti P, et al. MicroRNAs associated with the pathogenesis of multiple sclerosis. Journal of neuroimmunology. 2016;295:148-61.
59. Keller A, Leidinger P, Meese E, Haas J, Backes C, Rasche L, et al. Next-generation sequencing identifies altered whole blood microRNAs in neuromyelitis optica spectrum disorder which may permit discrimination from multiple sclerosis. Journal of neuroinflammation. 2015;12(1):196.
60. Ebrahimkhani S, Vafaee F, Young PE, Hur SS, Hawke S, Devenney E, et al. Exosomal microRNA signatures in multiple sclerosis reflect disease status. Scientific Reports. 2017;7(1):14293.
61. Regev K, Paul A, Healy B, von Glenn F, Diaz-Cruz C, Gholipour T, et al. Comprehensive evaluation of serum microRNAs as biomarkers in multiple sclerosis. Neurology-Neuroimmunology Neuroinflammation. 2016;3(5):e267.
62. Vistbakka J, Sumelahti ML, Lehtimäki T, Elovaara I, Hagman S. Evaluation of serum miR‐191‐5p, miR‐24‐3p, miR‐128‐3p, and miR‐376c‐3 in multiple sclerosis patients. Acta Neurologica Scandinavica. 2018.
63. Niwald M, Migdalska-Sęk M, Brzeziańska-Lasota E, Miller E. Evaluation of selected MicroRNAs expression in remission phase of multiple sclerosis and their potential link to cognition, depression, and disability. Journal of Molecular Neuroscience. 2017;63(3-4):275-82.
64. Otaegui D, Baranzini SE, Armañanzas R, Calvo B, Muñoz-Culla M, Khankhanian P, et al. Differential micro RNA expression in PBMC from multiple sclerosis patients. PloS one. 2009;4(7):e6309.
65. Cox MB, Cairns MJ, Gandhi KS, Carroll AP, Moscovis S, Stewart GJ, et al. MicroRNAs miR-17 and miR-20a inhibit T cell activation genes and are under-expressed in MS whole blood. PloS one. 2010;5(8):e12132.
66. Rossi RL, Rossetti G, Wenandy L, Curti S, Ripamonti A, Bonnal RJ, et al. Distinct microRNA signatures in human lymphocyte subsets and enforcement of the naive state in CD4+ T cells by the microRNA miR-125b. Nat Immunol. 2011;12(8):796-803.
67. Ruhrmann S, Ewing E, Piket E, Kular L, Cetrulo Lorenzi JC, Fernandes SJ, et al. Hypermethylation of MIR21 in CD4+ T cells from patients with relapsing-remitting multiple sclerosis associates with lower miRNA-21 levels and concomitant up-regulation of its target genes. Multiple sclerosis (Houndmills, Basingstoke, England). 2017:1352458517721356.
68. Quinn JL, Kumar G, Agasing A, Ko RM, Axtell RC. Role of TFH cells in promoting T helper 17-induced neuroinflammation. Frontiers in immunology. 2018;9:382.
69. Machado-Santos J, Saji E, Tröscher AR, Paunovic M, Liblau R, Gabriely G, et al. The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells. Brain. 2018;141(7):2066-82.
70. Holm Hansen R, Højsgaard Chow H, Talbot J, Buhelt S, Nickelsen Hellem MN, Nielsen JE, et al. Peripheral helper T cells in the pathogenesis of multiple sclerosis. Multiple Sclerosis Journal. 2022:13524585211067696.
71. Guerau-de-Arellano M, Liu Y, Meisen WH, Pitt D, Racke MK, Lovett-Racke AE. Analysis of miRNA in normal appearing white matter to identify altered CNS pathways in multiple sclerosis. Journal of autoimmune disorders. 2015;1(1).
72. Lecca D, Marangon D, Coppolino GT, Méndez AM, Finardi A, Dalla Costa G, et al. MiR-125a-3p timely inhibits oligodendroglial maturation and is pathologically up-regulated in human multiple sclerosis. Scientific reports. 2016;6:34503.
73. Cantoni C, Cignarella F, Ghezzi L, Mikesell B, Bollman B, Berrien-Elliott MM, et al. Mir-223 regulates the number and function of myeloid-derived suppressor cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta neuropathologica. 2017;133(1):61-77.
74. Hosseini A, Ghaedi K, Tanhaei S, Ganjalikhani-Hakemi M, Teimuri S, Etemadifar M, et al. Upregulation of CD4+ T-cell derived MiR-223 in the relapsing phase of multiple sclerosis patients. Cell Journal (Yakhteh). 2016;18(3):371.
75. Majd M, Hosseini A, Ghaedi K, Kiani-Esfahani A, Tanhaei S, Shiralian-Esfahani H, et al. MiR-9-5p and miR-106a-5p dysregulated in CD4+ T-cells of multiple sclerosis patients and targeted essential factors of T helper17/regulatory T-cells differentiation. Iranian journal of basic medical sciences. 2018;21(3):277.
76. Lorenzi JCC, Brum DG, Zanette DL, de Paula Alves Souza A, Barbuzano FG, dos Santos AC, et al. miR-15a and 16-1 are downregulated in CD4+ T cells of multiple sclerosis relapsing patients. International Journal of Neuroscience. 2012;122(8):466-71.
77. Naghavian R, Ghaedi K, Kiani-Esfahani A, Ganjalikhani-Hakemi M, Etemadifar M, Nasr-Esfahani MH. miR-141 and miR-200a, revelation of new possible players in modulation of Th17/Treg differentiation and pathogenesis of multiple sclerosis. PloS one. 2015;10(5):e0124555.
78. Luo D, Fu J. Identifying characteristic miRNAs-genes and risk pathways of multiple sclerosis based on bioinformatics analysis. Oncotarget. 2018;9(4):5287.
79. Kimura K, Hohjoh H, Yamamura T. The Role for Exosomal microRNAs in Disruption of Regulatory T Cell Homeostasis in Multiple Sclerosis. Journal of experimental neuroscience. 2018;12:1179069518764892.
80. Aung LL, Mouradian MM, Dhib-Jalbut S, Balashov KE. MMP-9 expression is increased in B lymphocytes during multiple sclerosis exacerbation and is regulated by microRNA-320a. Journal of neuroimmunology. 2015;278:185-9.
81. Groen K, Maltby VE, Lea RA, Sanders KA, Fink JL, Scott RJ, et al. Erythrocyte microRNA sequencing reveals differential expression in relapsing-remitting multiple sclerosis. BMC medical genomics. 2018;11(1):48.
82. Baulina N, Kulakova O, Kiselev I, Osmak G, Popova E, Boyko A, et al. Immune-related miRNA expression patterns in peripheral blood mononuclear cells differ in multiple sclerosis relapse and remission. Journal of neuroimmunology. 2018;317:67-76.
83. Li Y, Du C, Wang W, Ma G, Cui L, Zhou H, et al. Genetic association of MiR-146a with multiple sclerosis susceptibility in the Chinese population. Cellular Physiology and Biochemistry. 2015;35(1):281-91.
84. Regev K, Healy BC, Khalid F, Paul A, Chu R, Tauhid S, et al. Association between serum microRNAs and magnetic resonance imaging measures of multiple sclerosis severity. JAMA neurology. 2017;74(3):275-85.
85. Zailaie SA, Siddiqui JJ, Al Saadi RM, Anbari DM, S. Alomari A, Cupler EJ. Serum based miRNA as a diagnostic biomarker for multiple sclerosis: a systematic review and meta-analysis. Immunological investigations. 2022;51(4):947-62.
86. Perdaens O, Dang HA, D'Auria L, Van Pesch V. CSF microRNAs discriminate MS activity and share similarity to other neuroinflammatory disorders. Neurology-Neuroimmunology Neuroinflammation. 2020;7(2).
87. Jansen F, Stumpf T, Proebsting S, Franklin BS, Wenzel D, Pfeifer P, et al. Intercellular transfer of miR-126-3p by endothelial microparticles reduces vascular smooth muscle cell proliferation and limits neointima formation by inhibiting LRP6. Journal of Molecular and Cellular Cardiology. 2017;104:43-52.
88. Saridas F, Tezcan Unlu H, Cecener G, Egeli U, Sabour Takanlou M, Sabour Takanlou L, et al. The expression and prognostic value of miR-146a and miR-155 in Turkish patients with multiple sclerosis. Neurological Research. 2022;44(3):217-23.
89. Giuliani A, Lattanzi S, Ramini D, Graciotti L, Danni MC, Procopio AD, et al. Potential prognostic value of circulating inflamma-miR-146a-5p and miR-125a-5p in relapsing-remitting multiple sclerosis. Multiple Sclerosis and Related Disorders. 2021;54:103126.
90. Kaplan B, Golderman S, Yahalom G, Yeskaraev R, Ziv T, Aizenbud BM, et al. Free light chain monomer–dimer patterns in the diagnosis of multiple sclerosis. Journal of immunological methods. 2013;390(1-2):74-80.
91. Leurs C, Twaalfhoven H, Lissenberg-Witte B, Van Pesch V, Dujmovic I, Drulovic J, et al. Kappa free light chains is a valid tool in the diagnostics of MS: A large multicenter study. Multiple Sclerosis Journal. 2020;26(8):912-23.
92. Presslauer S, Milosavljevic D, Huebl W, Aboulenein-Djamshidian F, Krugluger W, Deisenhammer F, et al. Validation of kappa free light chains as a diagnostic biomarker in multiple sclerosis and clinically isolated syndrome: a multicenter study. Multiple Sclerosis Journal. 2016;22(4):502-10.
93. Huang J, Khademi M, Fugger L, Lindhe Ö, Novakova L, Axelsson M, et al. Inflammation-related plasma and CSF biomarkers for multiple sclerosis. Proceedings of the National Academy of Sciences. 2020;117(23):12952-60.
94. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693-705.
95. Miller N. Genome, Epigenome and RNA sequences of Monozygotic Twins Discordant for Multiple Sclerosis. Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States); 2010.
96. Urdinguio RG, Sanchez-Mut JV, Esteller M. Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. The Lancet Neurology. 2009;8(11):1056-72.
97. Pedre X, Mastronardi F, Bruck W, López-Rodas G, Kuhlmann T, Casaccia P. Changed histone acetylation patterns in normal-appearing white matter and early multiple sclerosis lesions. Journal of Neuroscience. 2011;31(9):3435-45.
98. Jacob C, Christen CN, Pereira JA, Somandin C, Baggiolini A, Lötscher P, et al. HDAC1 and HDAC2 control the transcriptional program of myelination and the survival of Schwann cells. Nature neuroscience. 2011;14(4):429.
99. Shen S, Sandoval J, Swiss VA, Li J, Dupree J, Franklin RJ, et al. Age-dependent epigenetic control of differentiation inhibitors is critical for remyelination efficiency. Nature neuroscience. 2008;11(9):1024.
100. Castro K, Casaccia P. Epigenetic modifications in brain and immune cells of multiple sclerosis patients. Multiple sclerosis (Houndmills, Basingstoke, England). 2018;24(1):69-74.
101. Kragt J, Van Amerongen B, Killestein J, Dijkstra C, Uitdehaag B, Polman C, et al. Higher levels of 25-hydroxyvitamin D are associated with a lower incidence of multiple sclerosis only in women. Multiple Sclerosis Journal. 2009;15(1):9-15.
102. Hayes CE, Nashold FE, Spach KM, Pedersen LB. The immunological functions of the vitamin D endocrine system. Cellular and molecular biology (Noisy-le-Grand, France). 2003;49(2):277-300.
103. Ascherio A, Munger KL, Lunemann JD. The initiation and prevention of multiple sclerosis. Nature reviews Neurology. 2012;8(11):602-12.
104. Pierrot-Deseilligny C, Souberbielle JC. Vitamin D and multiple sclerosis: An update. Multiple sclerosis and related disorders. 2017;14:35-45.
105. Siersbaek R, Baek S, Rabiee A, Nielsen R, Traynor S, Clark N, et al. Molecular architecture of transcription factor hotspots in early adipogenesis. Cell reports. 2014;7(5):1434-42.
106. Siersbaek R, Rabiee A, Nielsen R, Sidoli S, Traynor S, Loft A, et al. Transcription factor cooperativity in early adipogenic hotspots and super-enhancers. Cell reports. 2014;7(5):1443-55.
107. Ramagopalan SV, Maugeri NJ, Handunnetthi L, Lincoln MR, Orton SM, Dyment DA, et al. Expression of the multiple sclerosis-associated MHC class II Allele HLA-DRB1*1501 is regulated by vitamin D. PLoS genetics. 2009;5(2):e1000369.
108. Ramagopalan SV, Heger A, Berlanga AJ, Maugeri NJ, Lincoln MR, Burrell A, et al. A ChIP-seq defined genome-wide map of vitamin D receptor binding: associations with disease and evolution. Genome research. 2010;20(10):1352-60.
109. Ayuso T, Aznar P, Soriano L, Olaskoaga A, Roldan M, Otano M, et al. Vitamin D receptor gene is epigenetically altered and transcriptionally up-regulated in multiple sclerosis. PLoS One. 2017;12(3):e0174726.
110. Lu M, Taylor BV, Korner H. Genomic Effects of the Vitamin D Receptor: Potentially the Link between Vitamin D, Immune Cells, and Multiple Sclerosis. Front Immunol. 2018;9:477.
111. Hypponen E, Power C. Hypovitaminosis D in British adults at age 45 y: nationwide cohort study of dietary and lifestyle predictors. The American journal of clinical nutrition. 2007;85(3):860-8.
112. Munger KL, Levin LI, Hollis BW, Howard NS, Ascherio A. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. Jama. 2006;296(23):2832-8.
113. Looker AC, Pfeiffer CM, Lacher DA, Schleicher RL, Picciano MF, Yetley EA. Serum 25-hydroxyvitamin D status of the US population: 1988-1994 compared with 2000-2004. The American journal of clinical nutrition. 2008;88(6):1519-27.
114. Rivas Alonso V, Flores Rivera JJ, Rito Garcia Y, Corona T. The genetics of multiple sclerosis in Latin America. Multiple sclerosis journal - experimental, translational and clinical. 2017;3(3):2055217317727295.
115. Jiang X, Ge T, Chen C-Y. The causal role of circulating vitamin D concentrations in human complex traits and diseases: a large-scale Mendelian randomization study. Scientific reports. 2021;11(1):1-10.
116. Wang R. Mendelian randomization study updates the effect of 25-hydroxyvitamin D levels on the risk of multiple sclerosis. Journal of translational medicine. 2022;20(1):1-10.
117. Agnello L, Scazzone C, Lo Sasso B, Vidali M, Giglio RV, Ciaccio AM, et al. Role of Multiple Vitamin D-Related Polymorphisms in Multiple Sclerosis Severity: Preliminary Findings. Genes. 2022;13(8):1307.
118. Fatima M, Lamis A, Siddiqui SW, Ashok T, Patni N, Fadiora OE. Therapeutic role of Vitamin D in multiple sclerosis: An essentially contested concept. Cureus. 2022;14(6).
119. Munger KL, Chitnis T, Ascherio A. Body size and risk of MS in two cohorts of US women. Neurology. 2009;73(19):1543-50.
120. Parikh SJ, Edelman M, Uwaifo GI, Freedman RJ, Semega-Janneh M, Reynolds J, et al. The relationship between obesity and serum 1,25-dihydroxy vitamin D concentrations in healthy adults. The Journal of clinical endocrinology and metabolism. 2004;89(3):1196-9.
121. Castro K, Ntranos A, Amatruda M, Petracca M, Kosa P, Chen EY, et al. Body Mass Index in Multiple Sclerosis modulates ceramide-induced DNA methylation and disease course. EBioMedicine. 2019;43:392-410.
122. Devêvre EF, Renovato-Martins M, Clément K, Sautès-Fridman C, Cremer I, Poitou C. Profiling of the three circulating monocyte subpopulations in human obesity. The Journal of Immunology. 2015;194(8):3917-23.
123. Olsson T, Barcellos LF, Alfredsson L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nature reviews Neurology. 2017;13(1):25-36.
124. Marabita F, Almgren M, Sjoholm LK, Kular L, Liu Y, James T, et al. Smoking induces DNA methylation changes in Multiple Sclerosis patients with exposure-response relationship. Sci Rep. 2017;7(1):14589.
125. Bach JF. The effect of infections on susceptibility to autoimmune and allergic diseases. The New England journal of medicine. 2002;347(12):911-20.
126. Ascherio A, Munger KL. Environmental risk factors for multiple sclerosis. Part I: the role of infection. Ann Neurol. 2007;61(4):288-99.
127. Christensen T. HERVs in neuropathogenesis. Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology. 2010;5(3):326-35.
128. Brudek T, Christensen T, Aagaard L, Petersen T, Hansen HJ, Moller-Larsen A. B cells and monocytes from patients with active multiple sclerosis exhibit increased surface expression of both HERV-H Env and HERV-W Env, accompanied by increased seroreactivity. Retrovirology. 2009;6:104.
129. Christensen T. Human endogenous retroviruses in the aetiology of MS. Acta Neurol Scand. 2017;136 Suppl 201:18-21.
130. Sotelo J, Corona T. Varicella zoster virus and relapsing remitting multiple sclerosis. Multiple sclerosis international. 2011;2011:214763.
131. Berer K, Mues M, Koutrolos M, Rasbi ZA, Boziki M, Johner C, et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature. 2011;479(7374):538-41.
132. Correale J, Farez MF. The impact of environmental infections (parasites) on MS activity. Multiple sclerosis (Houndmills, Basingstoke, England). 2011;17(10):1162-9.
133. Hedstrom AK, Akerstedt T, Olsson T, Alfredsson L. Shift work influences multiple sclerosis risk. Multiple sclerosis (Houndmills, Basingstoke, England). 2015;21(9):1195-9.
134. Farez MF, Mascanfroni ID, Mendez-Huergo SP, Yeste A, Murugaiyan G, Garo LP, et al. Melatonin Contributes to the Seasonality of Multiple Sclerosis Relapses. Cell. 2015;162(6):1338-52.
135. Karberg S. Switching on epigenetic therapy. Cell. 2009;139(6):1029-31.
136. Castelo-Branco G, Stridh P, Guerreiro-Cacais AO, Adzemovic MZ, Falcao AM, Marta M, et al. Acute treatment with valproic acid and l-thyroxine ameliorates clinical signs of experimental autoimmune encephalomyelitis and prevents brain pathology in DA rats. Neurobiology of disease. 2014;71:220-33.
137. Ge Z, Da Y, Xue Z, Zhang K, Zhuang H, Peng M, et al. Vorinostat, a histone deacetylase inhibitor, suppresses dendritic cell function and ameliorates experimental autoimmune encephalomyelitis. Experimental neurology. 2013;241:56-66.
138. Jin B, Robertson KD. DNA methyltransferases, DNA damage repair, and cancer. Advances in experimental medicine and biology. 2013;754:3-29.
139. Zhang Z, Zhang ZY, Wu Y, Schluesener HJ. Valproic acid ameliorates inflammation in experimental autoimmune encephalomyelitis rats. Neuroscience. 2012;221:140-50.
140. Pérez MMG, Eisele SJG. MicroRNAs as a possible biomarker in the treatment of multiple sclerosis. IBRO Neuroscience Reports. 2022.
141. Ransohoff RM. Animal models of multiple sclerosis: the good, the bad and the bottom line. Nat Neurosci. 2012;15(8):1074-7.
142. Aslani S, Jafari N, Javan MR, Karami J, Ahmadi M, Jafarnejad M. Epigenetic Modifications and Therapy in Multiple Sclerosis. Neuromolecular medicine. 2017;19(1):11-23.
143. Azoulay D, Vachapova V, Shihman B, Miler A, Karni A. Lower brain-derived neurotrophic factor in serum of relapsing remitting MS: reversal by glatiramer acetate. J Neuroimmunol. 2005;167(1-2):215-8.
144. Frota ER, Rodrigues DH, Donadi EA, Brum DG, Maciel DR, Teixeira AL. Increased plasma levels of brain derived neurotrophic factor (BDNF) after multiple sclerosis relapse. Neurosci Lett. 2009;460(2):130-2.
145. Hewes D, Tatomir A, Kruszewski AM, Rao G, Tegla CA, Ciriello J, et al. SIRT1 as a potential biomarker of response to treatment with glatiramer acetate in multiple sclerosis. Experimental and molecular pathology. 2017;102(2):191-7.
146. Mameli G, Arru G, Caggiu E, Niegowska M, Leoni S, Madeddu G, et al. Natalizumab therapy modulates miR-155, miR-26a and proinflammatory cytokine expression in MS patients. PloS one. 2016;11(6):e0157153.
147. Bergman P, Piket E, Khademi M, James T, Brundin L, Olsson T, et al. Circulating miR-150 in CSF is a novel candidate biomarker for multiple sclerosis. Neurology-Neuroimmunology Neuroinflammation. 2016;3(3).
148. Rae-Grant A, Day GS, Marrie RA, Rabinstein A, Cree BA, Gronseth GS, et al. Comprehensive systematic review summary: Disease-modifying therapies for adults with multiple sclerosis: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology. 2018;90(17):789-800.
149. Chen L, Gao D, Shao Z, Zheng Q, Yu Q. miR-155 indicates the fate of CD4+ T cells. Immunology Letters. 2020;224:40-9.
150. Wray S, Then Bergh F, Wundes A, Arnold DL, Drulovic J, Jasinska E, et al. Efficacy and Safety Outcomes with Diroximel Fumarate After Switching from Prior Therapies or Continuing on DRF: Results from the Phase 3 EVOLVE-MS-1 Study. Advances in therapy. 2022;39(4):1810-31.
151. van Oosten BW, Killestein J, Barkhof F, Polman CH, Wattjes MP. PML in a patient treated with dimethyl fumarate from a compounding pharmacy. New England Journal of Medicine. 2013;368(17):1658-9.
152. Montalban X, Comi G, O’connor P, Gold S, De Vera A, Eckert B, et al. Oral fingolimod (FTY720) in relapsing multiple sclerosis: impact on health-related quality of life in a phase II study. Multiple Sclerosis Journal. 2011;17(11):1341-50.
153. Gärtner J, Hauser SL, Bar-Or A, Montalban X, Cohen JA, Cross AH, et al. Efficacy and safety of ofatumumab in recently diagnosed, treatment-naive patients with multiple sclerosis: Results from ASCLEPIOS I and II. Multiple Sclerosis Journal. 2022:13524585221078825.
154. Fox E, Lovett-Racke AE, Gormley M, Liu Y, Petracca M, Cocozza S, et al. A phase 2 multicenter study of ublituximab, a novel glycoengineered anti-CD20 monoclonal antibody, in patients with relapsing forms of multiple sclerosis. Multiple Sclerosis Journal. 2021;27(3):420-9.
155. Rolfes L, Pawlitzki M, Pfeuffer S, Huntemann N, Wiendl H, Ruck T, et al. Failed, interrupted, or inconclusive trials on immunomodulatory treatment strategies in multiple sclerosis: update 2015–2020. BioDrugs. 2020;34(5):587-610.
156. Krämer J, Wiendl H. What Have Failed, Interrupted, and Withdrawn Antibody Therapies in Multiple Sclerosis Taught Us? Neurotherapeutics. 2022;19(3):785-807.
157. Fitz-James MH, Cavalli G. Molecular mechanisms of transgenerational epigenetic inheritance. Nature Reviews Genetics. 2022;23(6):325-41.
158. Robles P, Turner A, Zuco G, Adams S, Paganopolou P, Winton M, et al. Parental energy-sensing pathways control intergenerational offspring sex determination in the nematode Auanema freiburgensis. BMC biology. 2021;19(1):1-15.
159. Lehmann-Werman R, Neiman D, Zemmour H, Moss J, Magenheim J, Vaknin-Dembinsky A, et al. Identification of tissue-specific cell death using methylation patterns of circulating DNA. Proceedings of the National Academy of Sciences of the United States of America. 2016;113(13):E1826-34.
160. Olsen JA, Kenna LA, Tipon RC, Spelios MG, Stecker MM, Akirav EM. A Minimally-invasive Blood-derived Biomarker of Oligodendrocyte Cell-loss in Multiple Sclerosis. EBioMedicine. 2016;10:227-35.
161. Ebert MS, Sharp PA. MicroRNA sponges: progress and possibilities. RNA (New York, NY). 2010;16(11):2043-50.
162. Ghalamfarsa G, Hojjat-Farsangi M, Mohammadnia-Afrouzi M, Anvari E, Farhadi S, Yousefi M, et al. Application of nanomedicine for crossing the blood-brain barrier: Theranostic opportunities in multiple sclerosis. Journal of immunotoxicology. 2016;13(5):603-19.
163. Pondman KM, Tsolaki AG, Paudyal B, Shamji MH, Switzer A, Pathan AA, et al. Complement Deposition on Nanoparticles Can Modulate Immune Responses by Macrophage, B and T Cells. Journal of biomedical nanotechnology. 2016;12(1):197-216.
164. Subramanian S, Bates SE, Wright JJ, Espinoza-Delgado I, Piekarz RL. Clinical Toxicities of Histone Deacetylase Inhibitors. Pharmaceuticals (Basel, Switzerland). 2010;3(9):2751-67.
165. Chateauvieux S, Morceau F, Dicato M, Diederich M. Molecular and therapeutic potential and toxicity of valproic acid. Journal of biomedicine & biotechnology. 2010;2010.
166. Hilton IB, D'Ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE, et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nature biotechnology. 2015;33(5):510-7.
167. McDonald JI, Celik H, Rois LE, Fishberger G, Fowler T, Rees R, et al. Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation. Biology open. 2016;5(6):866-74.
168. Vojta A, Dobrinić P, Tadić V, Bočkor L, Korać P, Julg B, et al. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic acids research. 2016;44(12):5615-28.
169. Xu X, Tao Y, Gao X, Zhang L, Li X, Zou W, et al. A CRISPR-based approach for targeted DNA demethylation. Cell discovery. 2016;2:16009.
170. Andlauer TF, Buck D, Antony G, Bayas A, Bechmann L, Berthele A, et al. Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation. Science advances. 2016;2(6):e1501678.
171. Shariati SAM, Lau P, Hassan BA, Müller U, Dotti CG, De Strooper B, et al. APLP2 regulates neuronal stem cell differentiation during cortical development. J Cell Sci. 2013:jcs. 122440.
172. Gandhi R, Healy B, Gholipour T, Egorova S, Musallam A, Hussain MS, et al. Circulating microRNAs as biomarkers for disease staging in multiple sclerosis. Annals of neurology. 2013;73(6):729-40.
173. Liguori M, Nuzziello N, Licciulli F, Consiglio A, Simone M, Viterbo RG, et al. Combined microRNA and mRNA expression analysis in pediatric multiple sclerosis: an integrated approach to uncover novel pathogenic mechanisms of the disease. Human molecular genetics. 2017;27(1):66-79.
174. Søndergaard HB, Hesse D, Krakauer M, Sørensen PS, Sellebjerg F. Differential microRNA expression in blood in multiple sclerosis. Multiple Sclerosis Journal. 2013;19(14):1849-57.
175. Martinelli-Boneschi F, Fenoglio C, Brambilla P, Sorosina M, Giacalone G, Esposito F, et al. MicroRNA and mRNA expression profile screening in multiple sclerosis patients to unravel novel pathogenic steps and identify potential biomarkers. Neuroscience letters. 2012;508(1):4-8.
176. Yang D, Wang W-Z, Zhang X-M, Yue H, Li B, Lin L, et al. MicroRNA expression aberration in Chinese patients with relapsing remitting multiple sclerosis. Journal of Molecular Neuroscience. 2014;52(1):131-7.
177. Keller A, Leidinger P, Steinmeyer F, Stähler C, Franke A, Hemmrich-Stanisak G, et al. Comprehensive analysis of microRNA profiles in multiple sclerosis including next-generation sequencing. Multiple Sclerosis Journal. 2014;20(3):295-303.
178. Fenoglio C, De Riz M, Pietroboni AM, Calvi A, Serpente M, Cioffi SM, et al. Effect of fingolimod treatment on circulating miR-15b, miR23a and miR-223 levels in patients with multiple sclerosis. Journal of neuroimmunology. 2016;299:81-3.
179. Fenoglio C, Ridolfi E, Cantoni C, De Riz M, Bonsi R, Serpente M, et al. Decreased circulating miRNA levels in patients with primary progressive multiple sclerosis. Multiple Sclerosis Journal. 2013;19(14):1938-42.
180. Liu R, Ma X, Chen L, Yang Y, Zeng Y, Gao J, et al. MicroRNA-15b suppresses Th17 differentiation and is associated with pathogenesis of multiple sclerosis by targeting O-GlcNAc transferase. The Journal of Immunology. 2017:1601727.
181. Ehya F, Tehrani HA, Garshasbi M, Nabavi SM. Identification of miR-24 and miR-137 as novel candidate multiple sclerosis miRNA biomarkers using multi-staged data analysis protocol. Molecular biology research communications. 2017;6(3):127.
182. Lindberg RL, Hoffmann F, Mehling M, Kuhle J, Kappos L. Altered expression of miR‐17‐5p in CD4+ lymphocytes of relapsing–remitting multiple sclerosis patients. European journal of immunology. 2010;40(3):888-98.
183. Meira M, Sievers C, Hoffmann F, Rasenack M, Kuhle J, Derfuss T, et al. Unraveling Natalizumab Effects on Deregulated miR-17 Expression in CD4. Journal of immunology research. 2014;2014.
184. Muñoz-Culla M, Irizar H, Sáenz-Cuesta M, Castillo-Triviño T, Osorio-Querejeta I, Sepúlveda L, et al. SncRNA (microRNA & snoRNA) opposite expression pattern found in multiple sclerosis relapse and remission is sex dependent. Scientific reports. 2016;6:20126.
185. De Santis G, Ferracin M, Biondani A, Caniatti L, Tola MR, Castellazzi M, et al. Altered miRNA expression in T regulatory cells in course of multiple sclerosis. Journal of neuroimmunology. 2010;226(1-2):165-71.
186. Ghadiri N, Emamnia N, Ganjalikhani-Hakemi M, Ghaedi K, Etemadifar M, Salehi M, et al. Analysis of the expression of mir-34a, mir-199a, mir-30c and mir-19a in peripheral blood CD4+ T lymphocytes of relapsing-remitting multiple sclerosis patients. Gene. 2018;659:109-17.
187. Ehtesham N, Khorvash F, Kheirollahi M. miR-145 and miR20a-5p Potentially mediate pleiotropic effects of interferon-beta through mitogen-activated protein kinase signaling pathway in multiple sclerosis patients. Journal of Molecular Neuroscience. 2017;61(1):16-24.
188. Keller A, Leidinger P, Lange J, Borries A, Schroers H, Scheffler M, et al. Multiple sclerosis: microRNA expression profiles accurately differentiate patients with relapsing-remitting disease from healthy controls. PloS one. 2009;4(10):e7440.
189. Fenoglio C, Cantoni C, De Riz M, Ridolfi E, Cortini F, Serpente M, et al. Expression and genetic analysis of miRNAs involved in CD4+ cell activation in patients with multiple sclerosis. Neuroscience letters. 2011;504(1):9-12.
190. Quintana E, Ortega FJ, Robles-Cedeño R, Villar ML, Buxó M, Mercader JM, et al. miRNAs in cerebrospinal fluid identify patients with MS and specifically those with lipid-specific oligoclonal IgM bands. Multiple Sclerosis Journal. 2017;23(13):1716-26.
191. Honardoost MA, Kiani-Esfahani A, Ghaedi K, Etemadifar M, Salehi M. miR-326 and miR-26a, two potential markers for diagnosis of relapse and remission phases in patient with relapsing–remitting multiple sclerosis. Gene. 2014;544(2):128-33.
192. Potenza N, Mosca N, Mondola P, Damiano S, Russo A, De Felice B. Human miR-26a-5p regulates the glutamate transporter SLC1A1 (EAAT3) expression. Relevance in multiple sclerosis. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2018;1864(1):317-23.
193. Ahmadian-Elmi M, Pour AB, Naghavian R, Ghaedi K, Tanhaei S, Izadi T, et al. miR-27a and miR-214 exert opposite regulatory roles in Th17 differentiation via mediating different signaling pathways in peripheral blood CD4+ T lymphocytes of patients with relapsing–remitting multiple sclerosis. Immunogenetics. 2016;68(1):43-54.
194. Smith KM, Guerau-de-Arellano M, Costinean S, Williams JL, Bottoni A, Cox GM, et al. miR-29ab1 deficiency identifies a negative feedback loop controlling Th1 bias that is dysregulated in multiple sclerosis. The Journal of Immunology. 2012:1103171.
195. Qu X, Zhou J, Wang T, Han J, Ma L, Yu H, et al. MiR-30a inhibits Th17 differentiation and demyelination of EAE mice by targeting the IL-21R. Brain, behavior, and immunity. 2016;57:193-9.
196. Chen J, Zhu J, Wang Z, Yao X, Wu X, Liu F, et al. MicroRNAs correlate with multiple sclerosis and neuromyelitis optica spectrum disorder in a Chinese population. Medical science monitor: international medical journal of experimental and clinical research. 2017;23:2565.
197. Reijerkerk A, Lopez-Ramirez MA, van Het Hof B, Drexhage JA, Kamphuis WW, Kooij G, et al. MicroRNAs regulate human brain endothelial cell-barrier function in inflammation: implications for multiple sclerosis. Journal of Neuroscience. 2013;33(16):6857-63.
198. Freiesleben S, Hecker M, Zettl UK, Fuellen G, Taher L. Analysis of microRNA and gene expression profiles in multiple sclerosis: integrating interaction data to uncover regulatory mechanisms. Scientific reports. 2016;6:34512.
199. Mandolesi G, De Vito F, Musella A, Gentile A, Bullitta S, Fresegna D, et al. miR-142-3p is a key regulator of IL-1β-dependent synaptopathy in neuroinflammation. Journal of Neuroscience. 2017;37(3):546-61.
200. Kiselev I, Bashinskaya V, Kulakova O, Baulina N, Popova E, Boyko A, et al. Variants of MicroRNA genes: gender-specific associations with multiple sclerosis risk and severity. International journal of molecular sciences. 2015;16(8):20067-81.
201. Bergman P, Piket E, Khademi M, James T, Brundin L, Olsson T, et al. Circulating miR-150 in CSF is a novel candidate biomarker for multiple sclerosis. Neurology-Neuroimmunology Neuroinflammation. 2016;3(3):e219.
202. Zhang J, Cheng Y, Cui W, Li M, Li B, Guo L. MicroRNA-155 modulates Th1 and Th17 cell differentiation and is associated with multiple sclerosis and experimental autoimmune encephalomyelitis. Journal of neuroimmunology. 2014;266(1-2):56-63.
203. Paraboschi EM, Soldà G, Gemmati D, Orioli E, Zeri G, Benedetti MD, et al. Genetic association and altered gene expression of mir-155 in multiple sclerosis patients. International journal of molecular sciences. 2011;12(12):8695-712.
204. Moore CS, Rao VT, Durafourt BA, Bedell BJ, Ludwin SK, Bar‐Or A, et al. miR‐155 as a multiple sclerosis–relevant regulator of myeloid cell polarization. Annals of neurology. 2013;74(5):709-20.
205. Murugaiyan G, Beynon V, Mittal A, Joller N, Weiner HL. Silencing microRNA-155 ameliorates experimental autoimmune encephalomyelitis. The Journal of Immunology. 2011:1003952.
206. Haghikia A, Haghikia A, Hellwig K, Baraniskin A, Holzmann A, Décard BF, et al. Regulated microRNAs in the CSF of patients with multiple sclerosis a case-control study. Neurology. 2012;79(22):2166-70.
207. Ahlbrecht J, Martino F, Pul R, Skripuletz T, Sühs K-W, Schauerte C, et al. Deregulation of microRNA-181c in cerebrospinal fluid of patients with clinically isolated syndrome is associated with early conversion to relapsing–remitting multiple sclerosis. Multiple Sclerosis Journal. 2016;22(9):1202-14.
208. Bruinsma IB, van Dijk M, Bridel C, van de Lisdonk T, Haverkort SQ, Runia TF, et al. Regulator of oligodendrocyte maturation, miR-219, a potential biomarker for MS. Journal of neuroinflammation. 2017;14(1):235.
209. Du C, Liu C, Kang J, Zhao G, Ye Z, Huang S, et al. MicroRNA miR-326 regulates T H-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nature immunology. 2009;10(12):1252.
210. Wu R, He Q, Chen H, Xu M, Zhao N, Xiao Y, et al. MicroRNA-448 promotes multiple sclerosis development through induction of Th17 response through targeting protein tyrosine phosphatase non-receptor type 2 (PTPN2). Biochemical and biophysical research communications. 2017;486(3):759-66.
211. Hecker M, Fitzner B, Blaschke J, Blaschke P, Zettl UK. Susceptibility variants in the CD58 gene locus point to a role of microRNA-548ac in the pathogenesis of multiple sclerosis. Mutation Research/Reviews in Mutation Research. 2015;763:161-7.
212. Liu Q, Gao Q, Zhang Y, Li Z, Mei X. MicroRNA-590 promotes pathogenic Th17 cell differentiation through targeting Tob1 and is associated with multiple sclerosis. Biochemical and biophysical research communications. 2017;493(2):901-8.
213. Iparraguirre L, Muñoz-Culla M, Prada-Luengo I, Castillo-Triviño T, Olascoaga J, Otaegui D. Circular RNA profiling reveals that circular RNAs from ANXA2 can be used as new biomarkers for multiple sclerosis. Human molecular genetics. 2017;26(18):3564-72.
IssueVol 8, No 2 (2025); in press QRcode
SectionReview Article
DOI https://doi.org/10.18502/igj.v8i2.17997
Keywords
Multiple Sclerosis Epigenetics DNA Methylation MicroRNA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Tarkashvand S, Hanaei S. The Role of Epigenetics in Multiple Sclerosis. Immunol Genet J. 2025;8(2).