Adoptive Cell Therapy in Pediatric Leukemia
Abstract
Acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) are the two common types of pediatric leukemia. Despite conventional therapy, treatment failure and poor survival are observed in children with leukemia. Adoptive cell therapy needs to get more advanced to overcome high-risk pediatric leukemia. Dendritic Cells and cytokines are two influential factors in natural killer (NK) cell therapy. However, no defined effect of killer-cell immunoglobulin-like receptor (KIR) on NK cells has been obtained. Moreover, a combination of checkpoint fusion protein with chimeric antigen receptor (CAR) T-cell therapy can highly improve the anti-tumor function of T cells. Biomarkers, namely serum cytokines, MicroRNAs (miRs), ADAM6, CD200 and CD123, sGRP78 and CXCR4, and Semaphorin 4D (Sema4D) are helpful in finding patients with a risk of relapse, and an appropriate treatment approach, or act as a potential targetable marker. In this review, the clinical and preclinical/animal studies with the purpose of diagnosis and treatment of relapsed or refractory pediatric leukemia are discussed. Preclinical/animal ACT studies have shown improvements in the treatment of children with high-risk leukemia. However, clinical studies are required to verify the efficacy of these approaches for the treatment of childhood leukemia.
2. Hunger SP, Lu X, Devidas M, Camitta BM, Gaynon PS, Winick NJ, et al. Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: a report from the Children's Oncology Group. J Clin Oncol. 2012;30(14):1663.
3. Nguyen K, Devidas M, Cheng S-C, La M, Raetz EA, Carroll WL, et al. Factors influencing survival after relapse from acute lymphoblastic leukemia: a Children's Oncology Group study. Leukemia. 2008;22(12):2142–50.
4. Bonifant CL, Tasian SK. The future of cellular immunotherapy for childhood leukemia. Curr Opin Pediatr. 2020;32(1):13.
5. Greiner J, Götz M, Wais V. Increasing role of targeted immunotherapies in the treatment of AML. Int J Mol Sci. 2022;23(6):3304.
6. Manzano-Muñoz A, Alcon C, Menéndez P, Ramírez M, Seyfried F, Debatin K-M, et al. MCL-1 inhibition overcomes anti-apoptotic adaptation to targeted therapies in B-cell precursor acute lymphoblastic leukemia. Front Cell Dev Biol. 2021;9:2520.
7. Jameson JL, Longo DL. Precision medicine—personalized, problematic, and promising. Obstet Gynecol Surv. 2015;70(10):612–4.
8. Korotchkina L, Kazyulkin D, Komarov PG, Polinsky A, Andrianova EL, Joshi S, et al. OT-82, a novel anticancer drug candidate that targets the strong dependence of hematological malignancies on NAD biosynthesis. Leukemia. 2020;34(7):1828–39.
9. Moreira-Nunes CA, Mesquita FP, Portilho AJdS, Mello Júnior FAR, Maués JHdS, Pantoja LdC, et al. Targeting aurora kinases as a potential prognostic and therapeutic biomarker in pediatric acute lymphoblastic leukemia. Sci Rep. 2020;10(1):1–10.
10. Handgretinger R, Lang P, Andre MC. Exploitation of natural killer cells for the treatment of acute leukemia. Blood. 2016;127(26):3341–9.
11. Kimpo MS, Oh B, Lee S. The role of natural killer cells as a platform for immunotherapy in pediatric cancers. Curr Oncol Rep. 2019;21(10):93.
12. Barrett DM, Singh N, Porter DL, Grupp SA, June CH. Chimeric antigen receptor therapy for cancer. Annu Rev Med. 2014;65:333.
13. Eshhar Z, Waks T, Gross G, Schindler DG. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci U S A. 1993;90(2):720–4.
14. Restifo SA, Rosenberg NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Cancer Immunol Immunother. 2015.
15. Sprangers B, Van Wijmeersch B, Fevery S, Waer M, Billiau AD. Experimental and clinical approaches for optimization of the graft-versus-leukemia effect. Nat Clin Pract Oncol. 2007;4(7):404–14.
16. Moretta L, Bottino C. Natural killer cells: a mystery no more. Scand J Immunol. 2002.
17. Bottino C, Castriconi R, Pende D, Rivera P, Nanni M, Carnemolla B, et al. Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J Exp Med. 2003;198(4):557–67.
18. Moretta A. Activating receptors and coreceptors. Annu Rev Immunol. 2001.
19. Reizis B. Plasmacytoid dendritic cells: development, regulation, and function. Immunity. 2019;50(1):37–50.
20. Collin M, Bigley V. Human dendritic cell subsets: an update. Immunology. 2018;154(1):3–20.
21. Anguille S, Smits EL, Lion E, van Tendeloo VF, Berneman ZN, et al. Clinical use of dendritic cells for cancer therapy. Lancet Oncol. 2014;15(7):e257–67.
22. Van Eck Van Der Sluijs J, Van Ens D, Thordardottir S, Vodegel D, Hermens I, et al. Clinically applicable CD34+-derived blood dendritic cell subsets exhibit key subset-specific features and potently boost anti-tumor T and NK cell responses. Cancer Immunol Immunother. 2021;70(11):3167–81.
23. Liu S, Dhar P, Wu JD. NK cell plasticity in cancer. J Clin Med. 2019;8(9):1492.
24. Romee R, Schneider SE, Leong JW, Chase JM, Keppel CR, Sullivan RP, et al. Cytokine activation induces human memory-like NK cells. Blood. 2012;120(24):4751–60.
25. Song Y, Hu B, Liu Y, Jin Z, Zhang Y, Lin D, et al. IL-12/IL-18-preactivated donor NK cells enhance GVL effects and mitigate GvHD after allogeneic hematopoietic stem cell transplantation. Eur J Immunol. 2018;48(4):670–82.
26. Romee R, et al. Cytokine-induced memory-like natural killer cells exhibit enhanced responses. 2016.
27. Tanzi M, Consonni M, Falco M, Ferulli F, Montini E, Pasi A, et al. Cytokine-induced memory-like NK cells with high reactivity against acute leukemia blasts and solid tumor cells suitable for adoptive immunotherapy approaches. Cancers (Basel). 2021;13(7):1687.
28. Parham P. MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol. 2005;5(3):201–14.
29. Leung W. Use of NK cell activity in cure by transplant. Br J Haematol. 2011;155(1):14–29.
30. Uhrberg M, Valiante NM, Shum BP, Shilling HG, Lienert-Weidenbach K, Corliss B, et al. Human diversity in killer cell inhibitory receptor genes. Immunity. 1997;7(6):753–63.
31. Uhrberg M, et al. Human KIR repertoires: shaped by genetic diversity and evolution. 2015.
32. Koltan S, Koltan A, Soszynska K, Matiakowska K, Morgut-Klimkowska M, Grzesk E, et al. Killer-cell immunoglobulin-like receptor genotype and haplotype combinations in children treated for acute lymphoblastic leukemia. Cent Eur J Immunol. 2021;46(2):210–6.
33. Verneris MR, Miller JS, Hsu KC, Wang T, Sees JA, Paczesny S, et al. Investigation of donor KIR content and matching in children undergoing hematopoietic cell transplantation for acute leukemia. Blood Adv. 2020;4(7):1350–6.
34. Barrett DM, Singh N, Porter DL, Grupp SA, June CH, et al. Chimeric antigen receptor therapy for cancer. Annu Rev Med. 2014;65:333–47.
35. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al. Chimeric antigen receptor–modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368(16):1509–18.
36. Gardner RA, et al. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood. 2017.
37. Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385(9967):517–28.
38. Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439–48.
39. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64.
40. Ribas A, et al. Cancer immunotherapy. Cancer Immunother. 2018.
41. Blaeschke F, Willier S, Stenger D, Lepenies M, Horstmann MA, Escherich G, et al. Leukemia-induced dysfunctional TIM-3+CD4+ bone marrow T cells increase risk of relapse in pediatric B-precursor ALL patients. Leukemia. 2020;34(10):2607–20.
42. Blaeschke F, Ortner E, Stenger D, Mahdawi J, Apfelbeck A, Habjan N, et al. Design and evaluation of TIM-3-CD28 checkpoint fusion proteins to improve anti-CD19 CAR T-cell function. Front Immunol. 2022;13:845499. Epub 2022 Apr 6.
43. Cooper SL, Brown PA. Treatment of pediatric acute lymphoblastic leukemia. Pediatr Clin North Am. 2015;62(1):61–73.
44. Nguyen K, Devidas M, Cheng SC, La M, Raetz EA, Carroll WL, et al. Factors influencing survival after relapse from acute lymphoblastic leukemia: a Children's Oncology Group study. Leukemia. 2008;22(12):2142–50.
45. Rheingold SR, Chen LN, Maude SL, Aplenc R, Barker C, Barrett DM, et al. Efficient trafficking of chimeric antigen receptor (CAR)-modified T cells to CSF and induction of durable CNS remissions in children with CNS/combined relapsed/refractory ALL. Blood. 2015;126(23):3769.
46. Abramson JS, McGree B, Noyes S, Plummer S, Wong C, Chen YB, et al. Anti-CD19 CAR T cells in CNS diffuse large B-cell lymphoma. N Engl J Med. 2017;377(8):783–4.
47. Talekar MK, Maude SL, Hucks GE, Motley LS, Callahan CA, White C, et al. Effect of chimeric antigen receptor-modified T (CAR-T) cells on responses in children with non-CNS extramedullary relapse of CD19+ acute lymphoblastic leukemia (ALL). J Clin Oncol. 2017;35:10507.
48. Rubinstein JD, Nelson AS, Krupski C, O'Brien W, Taylor JM, Badgett TC, et al. Chimeric antigen receptor T-cell therapy in patients with neurologic comorbidities. Pediatr Blood Cancer. 2020;67(4):e28199. Epub 2020 Feb 4.
49. Park JH, Rivière I, Gonen M, Wang X, Sénéchal B, Curran KJ, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378(5):449–59.
50. Rubinstein JD, Krupski C, Nelson AS, O'Brien MM, Davies SM, Phillips CL. Chimeric antigen receptor T cell therapy in patients with multiply relapsed or refractory extramedullary leukemia. Biol Blood Marrow Transplant. 2020;26(11):e280–5. Epub 2020 Aug 2.
51. Kocak U, Gursel T, Kaya Z, Aral YZ, Albayrak M, Keskin EY, et al. ALL-BFM 95 treatment in Turkish children with acute lymphoblastic leukemia—experience of a single center. Pediatr Hematol Oncol. 2012;29(2):130–40.
52. Pirenne J, Fontaine P. Cytokines and organ transplantation. 1994.
53. Walsh PT, Turka LA. Routes to transplant. Immunity. 2004;20.
54. Deschaseaux F, Delgado D, Pistoia V, Giuliani M, Morandi F, Durrbach A. HLA-G in organ transplantation: towards clinical applications. Cell Mol Life Sci. 2011;68(3):397–404.
55. Azik FM, Ertem M, Ileri T, Ince EU, Uysal Z, Egin Y, et al. Relation of soluble endothelial protein C receptor and cytokines after allogeneic hematopoietic stem cell transplantation. Clin Appl Thromb Hemost. 2011;17(1):94–9.
56. Wu S, Gessner R, von Stackelberg A, Kirchner R, Henze G, Seeger K. Cytokine/cytokine receptor gene expression in childhood acute lymphoblastic leukemia: correlation of expression and clinical outcome at first disease recurrence. Cancer. 2005;103(5):1054–63.
57. Binder S, Luciano M, Horejs-Hoeck J. The cytokine network in acute myeloid leukemia (AML): a focus on pro- and anti-inflammatory mediators. Cytokine Growth Factor Rev. 2018;43:8–15.
58. Locafaro G, Amodio G, Tomasoni D, Tresoldi C, Ciceri F, Gregori S. HLA-G expression on blasts and tolerogenic cells in patients affected by acute myeloid leukemia. J Immunol Res. 2014;2014:636292.
59. Almeida RDS, Ramos AML, Luna CF, Pedrosa F, Donadi EA, Lucena-Silva N. Cytokines and soluble HLA-G levels in bone marrow stroma and their association with the survival rate of patients exhibiting childhood T-cell acute lymphoblastic leukemia. Cytokine. 2018;102:94–101.
60. Nakamura O. Children's immunology, what can we learn from animal studies (1): decidual cells induce specific immune system of feto-maternal interface. J Toxicol Sci. 2009;34(Special):SP331–9.
61. Carosella ED, Dausset J, Rouas-Freiss N. Immunotolerant functions of HLA-G. Cell Mol Life Sci. 1999;55(3):327–33.
62. Kaya Z, Yuce D, Kirkiz S, Kocak U, Ozmen F. Prognostic role of serum cytokines and soluble HLA-G levels in children with leukemia who undergo allogeneic stem cell transplantation. Cytokine. 2022;153:155869.
63. Pui CH, Howard SC. Current management and challenges of malignant disease in the CNS in paediatric leukaemia. Lancet Oncol. 2008;9(3):257–68.
64. Egyed B, Kutszegi N, Sagi JC, Gezsi A, Rzepiel A, Visnovitz T, et al. MicroRNA-181a as novel liquid biopsy marker of central nervous system involvement in pediatric acute lymphoblastic leukemia. J Transl Med. 2020;18(1):250.
65. Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16(3):203–22.
66. Lim EL, Trinh DL, Ries RE, Wang J, Gerbing RB, Ma Y, et al. MicroRNA expression-based model indicates event-free survival in pediatric acute myeloid leukemia. J Clin Oncol. 2017;35(35):3964–77.
67. Tkach M, Théry C. Communication by extracellular vesicles: where we are and where we need to go. Cell. 2016;164(6):1226–32.
68. Ibrahimova A, Pommert L, Breese EH. Acute leukemia in infants. Curr Oncol Rep. 2021;23(3):27.
69. Giddings BM, Whitehead TP, Metayer C, Miller MD. Childhood leukemia incidence in California: high and rising in the Hispanic population. Cancer. 2016;122(18):2867–75.
70. Howlader N, Noone A, Krapcho M, Miller D, Brest A, Yu M, et al. SEER cancer statistics review, 1975–2018. Bethesda, MD: Natl Cancer Inst. 2021.
71. Starý J, Hrušák O. Recent advances in the management of pediatric acute lymphoblastic leukemia. F1000Res. 2016;5:2635.
72. Zapata-Tarrés M, Balandrán JC, Rivera-Luna R, Pelayo R. Childhood acute leukemias in developing nations: successes and challenges. Curr Oncol Rep. 2021;23(5):56.
73. Malard F, Mohty M. Acute lymphoblastic leukaemia. Lancet. 2020;395(10230):1146–62.
74. Alsuwaidi L, Hachim M, Senok A. Novel markers in pediatric acute lymphoid leukemia: the role of ADAM6 in B cell leukemia. Front Cell Dev Biol. 2021;9:706129.
75. Chen X, Pan J, Wang S, Hong S, Hong S, He S. The epidemiological trend of acute myeloid leukemia in childhood: a population-based analysis. J Cancer. 2019;10(20):4824–35.
76. Kandeel EZ, Madney Y, Eldin DN, Shafik NF. Overexpression of CD200 and CD123 is a major influential factor in the clinical course of pediatric acute myeloid leukemia. Exp Mol Pathol. 2021;118:104597.
77. Barclay A, Clark M, McCaughan G, editors. Neuronal/lymphoid membrane glycoprotein MRC OX-2 is a member of the immunoglobulin superfamily with a light-chain-like structure. Biochem Soc Symp. 1986.
78. Memarian A, Nourizadeh M, Masoumi F, Tabrizi M, Emami AH, Alimoghaddam K, et al. Upregulation of CD200 is associated with Foxp3+ regulatory T cell expansion and disease progression in acute myeloid leukemia. Tumour Biol. 2013;34(1):531–42.
79. Rygiel T, Karnam G, Goverse G, Van Der Marel A, Greuter M, Van Schaarenburg R, et al. CD200-CD200R signaling suppresses anti-tumor responses independently of CD200 expression on the tumor. Oncogene. 2012;31(24):2979–88.
80. Zahran AM, Mohammed Saleh MF, Sayed MM, Rayan A, Ali AM, Hetta HF. Up-regulation of regulatory T cells, CD200 and TIM3 expression in cytogenetically normal acute myeloid leukemia. Cancer Biomark. 2018;22(3):587–95.
81. Luo B, Lee AS. The critical roles of endoplasmic reticulum chaperones and unfolded protein response in tumorigenesis and anticancer therapies. Oncogene. 2013;32(7):805–18.
82. Lee AS. GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res. 2007;67(8):3496–9.
83. Lee E, Nichols P, Spicer D, Groshen S, Yu MC, Lee AS. GRP78 as a novel predictor of responsiveness to chemotherapy in breast cancer. Cancer Res. 2006;66(16):7849–53.
84. Todd DJ, Lee AH, Glimcher LH. The endoplasmic reticulum stress response in immunity and autoimmunity. Nat Rev Immunol. 2008;8(9):663–74.
85. van Galen P, Kreso A, Mbong N, Kent DG, Fitzmaurice T, Chambers JE, et al. The unfolded protein response governs integrity of the haematopoietic stem-cell pool during stress. Nature. 2014;510(7504):268–72.
86. Liu L, Zhao M, Jin X, Ney G, Yang KB, Peng F, et al. Adaptive endoplasmic reticulum stress signalling via IRE1alpha-XBP1 preserves self-renewal of haematopoietic and pre-leukaemic stem cells. Nat Cell Biol. 2019;21(3):328–37.
87. Wey S, Luo B, Lee AS. Acute inducible ablation of GRP78 reveals its role in hematopoietic stem cell survival, lymphogenesis and regulation of stress signaling. PLoS One. 2012;7(6):e39047.
88. Conner C, Lager TW, Guldner IH, Wu MZ, Hishida Y, Hishida T, et al. Cell surface GRP78 promotes stemness in normal and neoplastic cells. Sci Rep. 2020;10(1):1–11.
89. Munro S, Pelham HR. An Hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell. 1986;46(2):291–300.
90. Misra UK, Gonzalez-Gronow M, Gawdi G, Hart JP, Johnson CE, Pizzo SV. The role of Grp78 in α2-macroglobulin-induced signal transduction: evidence from RNA interference that the low density lipoprotein receptor-related protein is associated with, but not necessary for, GRP78-mediated signal transduction. J Biol Chem. 2002;277(44):42082–7.
91. Ni M, Zhang Y, Lee AS. Beyond the endoplasmic reticulum: atypical GRP78 in cell viability, signalling and therapeutic targeting. Biochem J. 2011;434(2):181–8.
92. Li J, Ni M, Lee B, Barron E, Hinton D, Lee A. The unfolded protein response regulator GRP78/BiP is required for endoplasmic reticulum integrity and stress-induced autophagy in mammalian cells. Cell Death Differ. 2008;15(9):1460–71.
93. Tsai YL, Zhang Y, Tseng CC, Stanciauskas R, Pinaud F, Lee AS. Characterization and mechanism of stress-induced translocation of 78-kilodalton glucose-regulated protein (GRP78) to the cell surface. J Biol Chem. 2015;290(13):8049–64.
94. Staquicini DI, D'Angelo S, Ferrara F, Karjalainen K, Sharma G, Smith TL, et al. Therapeutic targeting of membrane-associated GRP78 in leukemia and lymphoma: preclinical efficacy in vitro and formal toxicity study of BMTP-78 in rodents and primates. Pharmacogenomics J. 2018;18(3):436–43.
95. Wey S, Luo B, Tseng CC, Ni M, Zhou H, Fu Y, et al. Inducible knockout of GRP78/BiP in the hematopoietic system suppresses Pten-null leukemogenesis and AKT oncogenic signaling. Blood. 2012;119(3):817–25.
96. Wróbel T, Stefanko E, Dzietczenia J, Jaźwiec B, Mazur G, Haus O, et al. Significance of GRP78 expression in acute myeloid leukemias. Cent Eur J Med. 2014;9(2):204–9.
97. Huergo-Zapico L, Gonzalez-Rodriguez AP, Contesti J, Gonzalez E, López-Soto A, Fernandez-Guizan A, et al. Expression of ERp5 and GRP78 on the membrane of chronic lymphocytic leukemia cells: association with soluble MICA shedding. Cancer Immunol Immunother. 2012;61(8):1201–10.
98. Angeles-Floriano T, Rivera-Torruco G, Garcia-Maldonado P, Juarez E, Gonzalez Y, Parra-Ortega I, et al. Cell surface expression of GRP78 and CXCR4 is associated with childhood high-risk acute lymphoblastic leukemia at diagnostics. Sci Rep. 2022;12(1):2322.
99. Hall KT, Boumsell L, Schultze JL, Boussiotis VA, Dorfman DM, Cardoso AA, et al. Human CD100, a novel leukocyte semaphorin that promotes B-cell aggregation and differentiation. Proc Natl Acad Sci U S A. 1996;93(21):11780–5.
100. Maleki KT, Cornillet M, Björkström NK. Soluble SEMA4D/CD100: a novel immunoregulator in infectious and inflammatory diseases. Clin Immunol. 2016;163:52–9.
101. Mou P, Zeng Z, Li Q, Liu X, Xin X, Wannemacher KM, et al. Identification of a calmodulin-binding domain in Sema4D that regulates its exodomain shedding in platelets. Blood. 2013;121(20):4221–30.
102. Ch'ng ES, Kumanogoh A. Roles of Sema4D and Plexin-B1 in tumor progression. Mol Cancer. 2010;9(1):251.
103. Granziero L, Circosta P, Scielzo C, Frisaldi E, Stella S, Geuna M, et al. CD100/Plexin-B1 interactions sustain proliferation and survival of normal and leukemic CD5+ B lymphocytes. Blood. 2003;101(5):1962–9.
104. Deaglio S, Vaisitti T, Bergui L, Bonello L, Horenstein AL, Tamagnone L, et al. CD38 and CD100 lead a network of surface receptors relaying positive signals for B-CLL growth and survival. Blood. 2005;105(8):3042–50.
105. Jiang H, Tang J, Qiu L, Zhang Z, Shi S, Xue L, et al. Semaphorin 4D is a potential biomarker in pediatric leukemia and promotes leukemogenesis by activating PI3K/AKT and ERK signaling pathways. Oncol Rep. 2021;45(4).
Files | ||
Issue | Vol 8, No 1 (2025) | |
Section | Review Article | |
DOI | https://doi.org/10.18502/igj.v8i1.17992 | |
Keywords | ||
Adoptive Cell Therapy Biomarker CAR T-Cell Therapy NK-Cell Therapy Pediatric Leukemia |
Rights and permissions | |
![]() |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |