Autoimmune Hepatitis-Like Liver Injury after COVID-19 Vaccination; Review of Molecular Underpinnings and Clinicopathologic Picture
Abstract
Mass vaccination against COVID-19 infection has been able to substantially alleviate the consequent mortalities and the spread of the disease. The paced design and administration of novel mRNA-based vaccines paved the way for the production against cancers and acquired immunodeficiency syndrome. Various side effects, lethal in some instances, are described for COVID-19 vaccines, including the instigation of incidence or relapse of autoimmune disorders, including autoimmune hepatitis (AIH). Molecular mimicry with the spike protein S1 and cross-reactions, adjuvants-induced autoimmune/autoinflammatory syndrome, epitope spreading, and bystander activation are among the molecular mechanisms that are hypothesized to mediate vaccine-induced autoimmunity. Pathological and serologic evaluations of patients with liver injury following COVID-19 vaccination have displayed that most cases can be categorized as probable or definite for the diagnosis of AIH. AIH and AIH-like liver injuries following COVID-19 vaccination are generally manageable with the administration of corticosteroids and other immunosuppressive therapies if required. Data on the safety of subsequent vaccination is scarce; however, vaccination during maintenance therapy with steroids seems safe. More importantly, the recognition of asymptomatic cases with altered liver aminotransferase levels necessitates the design of prospective cohorts to assess the long-term consequences of sub-clinical liver dysfunction induced by COVID-19 vaccines.
2. Rahman S, Montero MTV, Rowe K, Kirton R, Kunik Jr F. Epidemiology, pathogenesis, clinical presentations, diagnosis and treatment of COVID-19: a review of current evidence. Expert review of clinical pharmacology. 2021;14(5):601-21.
3. Tregoning JS, Brown E, Cheeseman H, Flight K, Higham S, Lemm N, et al. Vaccines for COVID-19. Clinical & Experimental Immunology. 2020;202(2):162-92.
4. Farhud DD, Zokaei S. A Brief Overview of COVID-19 Vaccines. Iranian Journal of Public Health. 2021;50(7):i.
5. Zeng B, Gao L, Zhou Q, Yu K, Sun F. Effectiveness of COVID-19 vaccines against SARS-CoV-2 variants of concern: a systematic review and meta-analysis. BMC medicine. 2022;20(1):1-15.
6. Oster ME, Shay DK, Su JR, Gee J, Creech CB, Broder KR, et al. Myocarditis cases reported after mRNA-based COVID-19 vaccination in the US from December 2020 to August 2021. Jama. 2022;327(4):331-40.
7. Atzenhoffer M, Auffret M, Pegat A, Masmoudi K, Khouri C, Bertin B, et al. Guillain–Barré Syndrome Associated with COVID-19 Vaccines: A Perspective From Spontaneous Report Data. Clinical Drug Investigation. 2022:1-12.
8. Sharifian-Dorche M, Bahmanyar M, Sharifian-Dorche A, Mohammadi P, Nomovi M, Mowla A. Vaccine-induced immune thrombotic thrombocytopenia and cerebral venous sinus thrombosis post COVID-19 vaccination; a systematic review. Journal of the neurological sciences. 2021;428:117607.
9. Zuhorn F, Graf T, Klingebiel R, Schäbitz WR, Rogalewski A. Postvaccinal encephalitis after ChAdOx1 nCov‐19. Annals of neurology. 2021;90(3):506-11.
10. Fimiano F, D’Amato D, Gambella A, Marzano A, Saracco GM, Morgando A. Autoimmune hepatitis or drug‐induced autoimmune hepatitis following Covid‐19 vaccination? Liver International. 2022;42(5):1204.
11. Bril F, Al Diffalha S, Dean M, Fettig DM. Autoimmune hepatitis developing after coronavirus disease 2019 (COVID-19) vaccine: causality or casualty? Journal of Hepatology. 2021;75(1):222-4.
12. Lodato F, Larocca A, D’Errico A, Cennamo V. An unusual case of acute cholestatic hepatitis after m-RNABNT162b2 (Comirnaty) SARS-CoV-2 vaccine: coincidence, autoimmunity or drug-related liver injury. Journal of Hepatology. 2021;75(5):1254-6.
13. Rocco A, Sgamato C, Compare D, Nardone G. Autoimmune hepatitis following SARS-CoV-2 vaccine: may not be a casuality. Journal of hepatology. 2021;75(3):728-9.
14. Avci E, Abasiyanik F. Autoimmune hepatitis after SARS-CoV-2 vaccine: new-onset or flare-up? Journal of Autoimmunity. 2021;125:102745.
15. Kang SH, Kim MY, Cho MY, Baik SK. Autoimmune Hepatitis Following Vaccination for SARS-Cov-2 in Korea: Coincidence or Autoimmunity? Journal of Korean Medical Science. 2022;37(15).
16. Tanaka A. Autoimmune hepatitis: 2019 update. Gut and Liver. 2020;14(4):430.
17. Danielsson Borssén Å, Marschall H-U, Bergquist A, Rorsman F, Weiland O, Kechagias S, et al. Epidemiology and causes of death in a Swedish cohort of patients with autoimmune hepatitis. Scandinavian Journal of Gastroenterology. 2017;52(9):1022-8.
18. Hennes EM, Zeniya M, Czaja AJ, Parés A, Dalekos GN, Krawitt EL, et al. Simplified criteria for the diagnosis of autoimmune hepatitis. Hepatology. 2008;48(1):169-76.
19. Terziroli Beretta-Piccoli B, Mieli-Vergani G, Vergani D. Autoimmmune hepatitis. Cellular & molecular immunology. 2022;19(2):158-76.
20. Mack CL, Adams D, Assis DN, Kerkar N, Manns MP, Mayo MJ, et al. Diagnosis and Management of Autoimmune Hepatitis in Adults and Children: 2019 Practice Guidance and Guidelines From the American Association for the Study of Liver Diseases. Hepatology. 2020;72(2):671-722.
21. Malekzadeh R, Nasseri-Moghaddam S, Kaviani M-j, Taheri H, Kamalian N, Sotoudeh M. Cyclosporin A is a promising alternative to corticosteroids in autoimmune hepatitis. Digestive diseases and sciences. 2001;46(6):1321-7.
22. Weiler-Normann C, Schramm C, Quaas A, Wiegard C, Glaubke C, Pannicke N, et al. Infliximab as a rescue treatment in difficult-to-treat autoimmune hepatitis. Journal of hepatology. 2013;58(3):529-34.
23. Mahdavi Sharif P, Jabbari P, Razi S, Keshavarz-Fathi M, Rezaei N. Importance of TNF-alpha and its alterations in the development of cancers. Cytokine. 2020;130:155066.
24. Burak KW, Swain MG, Santodomino-Garzon T, Lee SS, Urbanski SJ, Aspinall AI, et al. Rituximab for the treatment of patients with autoimmune hepatitis who are refractory or intolerant to standard therapy. Canadian Journal of Gastroenterology. 2013;27(5):273-80.
25. Janmohamed A, Hirschfield GM. Autoimmune hepatitis and complexities in management. Frontline gastroenterology. 2019;10(1):77-87.
26. Dessie ZG, Zewotir T. Mortality-related risk factors of COVID-19: a systematic review and meta-analysis of 42 studies and 423,117 patients. BMC Infect Dis. 2021;21(1):855.
27. Yonas E, Alwi I, Pranata R, Huang I, Lim MA, Yamin M, et al. Elevated interleukin levels are associated with higher severity and mortality in COVID 19–a systematic review, meta-analysis, and meta-regression. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2020;14(6):2219-30.
28. Yang L, Liu S, Liu J, Zhang Z, Wan X, Huang B, et al. COVID-19: immunopathogenesis and Immunotherapeutics. Signal transduction and targeted therapy. 2020;5(1):1-8.
29. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet. 2020;395(10223):497-506.
30. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The lancet. 2020;395(10223):507-13.
31. Qin C, Ziwei MPLZM, Tao SYMY, Ke PCXMP, Shang MMPK. Dysregulation of immune response in patients with COVID-19 in Wuhan, China; Clinical Infectious Diseases; Oxford Academic. Clinical Infectious Diseases. 2020.
32. Liu J, Li S, Liu J, Liang B, Wang X, Wang H, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine. 2020;55:102763.
33. Wan S, Yi Q, Fan S, Lv J, Zhang X, Guo L, et al. Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia (NCP). MedRxiv. 2020.
34. Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Frontiers in immunology. 2020:827.
35. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. nature. 2020;579(7798):270-3.
36. Fathi N, Rezaei N. Lymphopenia in COVID‐19: Therapeutic opportunities. Cell biology international. 2020;44(9):1792-7.
37. Lippi G, Plebani M. Laboratory abnormalities in patients with COVID-2019 infection. Clinical chemistry and laboratory medicine (CCLM). 2020;58(7):1131-4.
38. Tan M, Liu Y, Zhou R, Deng X, Li F, Liang K, et al. Immunopathological characteristics of coronavirus disease 2019 cases in Guangzhou, China. Immunology. 2020;160(3):261-8.
39. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet respiratory medicine. 2020;8(4):420-2.
40. Yaugel-Novoa M, Bourlet T, Paul S. Role of the humoral immune response during COVID-19: guilty or not guilty? Mucosal Immunol. 2022;15(6):1170-80.
41. Khosroshahi LM, Rokni M, Mokhtari T, Noorbakhsh F. Immunology, immunopathogenesis and immunotherapeutics of COVID-19; an overview. International immunopharmacology. 2021;93:107364.
42. Long Q-X, Liu B-Z, Deng H-J, Wu G-C, Deng K, Chen Y-K, et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nature medicine. 2020;26(6):845-8.
43. Zhang G, Nie S. Longitudinal Change of SARS-Cov2 Antibodies in Patients with COVID-19 Guoxin Zhang, Shuke Nie, Zhaohui Zhang, Zhentao Zhang. 2020.
44. Zhao J, Yuan Q, Wang H, Liu W, Liao X, Su Y, et al. Antibody responses to SARS-CoV-2 in patients with novel coronavirus disease 2019. Clinical infectious diseases. 2020;71(16):2027-34.
45. To KK-W, Tsang OT-Y, Leung W-S, Tam AR, Wu T-C, Lung DC, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. The Lancet infectious diseases. 2020;20(5):565-74.
46. Wang B, Wang L, Kong X, Geng J, Xiao D, Ma C, et al. Long‐term coexistence of SARS‐CoV‐2 with antibody response in COVID‐19 patients. Journal of medical virology. 2020;92(9):1684-9.
47. Zhu Z, Chakraborti S, He Y, Roberts A, Sheahan T, Xiao X, et al. Potent cross-reactive neutralization of SARS coronavirus isolates by human monoclonal antibodies. Proceedings of the National Academy of Sciences. 2007;104(29):12123-8.
48. Jiang S, Hillyer C, Du L. Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses. Trends in immunology. 2020;41(5):355-9.
49. Ju B, Zhang Q, Ge J, Wang R, Sun J, Ge X, et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature. 2020;584(7819):115-9.
50. Gao T, Hu M, Zhang X, Li H, Zhu L, Liu H, et al. Highly pathogenic coronavirus N protein aggravates lung injury by MASP-2-mediated complement over-activation. MedRxiv. 2020.
51. Magro C, Mulvey JJ, Berlin D, Nuovo G, Salvatore S, Harp J, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Translational Research. 2020;220:1-13.
52. Gralinski LE, Sheahan TP, Morrison TE, Menachery VD, Jensen K, Leist SR, et al. Complement activation contributes to severe acute respiratory syndrome coronavirus pathogenesis. MBio. 2018;9(5):e01753-18.
53. Sun S, Zhao G, Liu C, Wu X, Guo Y, Yu H, et al. Inhibition of complement activation alleviates acute lung injury induced by highly pathogenic avian influenza H5N1 virus infection. American journal of respiratory cell and molecular biology. 2013;49(2):221-30.
54. Robbiani DF, Gaebler C, Muecksch F, Lorenzi JC, Wang Z, Cho A, et al. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature. 2020;584(7821):437-42.
55. Wang S-F, Tseng S-P, Yen C-H, Yang J-Y, Tsao C-H, Shen C-W, et al. Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins. Biochemical and biophysical research communications. 2014;451(2):208-14.
56. Yip MS, Leung NHL, Cheung CY, Li PH, Lee HHY, Daëron M, et al. Antibody-dependent infection of human macrophages by severe acute respiratory syndrome coronavirus. Virology journal. 2014;11(1):1-11.
57. Wang F, Nie J, Wang H, Zhao Q, Xiong Y, Deng L, et al. Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia. The Journal of infectious diseases. 2020;221(11):1762-9.
58. Pezeshki PS, Mahdavi Sharif P, Rezaei N. Resistance mechanisms to programmed cell death protein 1 and programmed death ligand 1 inhibitors. Expert Opin Biol Ther. 2021;21(12):1575-90.
59. Kuri-Cervantes L, Pampena MB, Meng W, Rosenfeld AM, Ittner CA, Weisman AR, et al. Comprehensive mapping of immune perturbations associated with severe COVID-19. Science immunology. 2020;5(49):eabd7114.
60. Laing AG, Lorenc A, Del Barrio IDM, Das A, Fish M, Monin L, et al. A consensus Covid-19 immune signature combines immuno-protection with discrete sepsis-like traits associated with poor prognosis. MedRxiv. 2020.
61. Zheng M, Gao Y, Wang G, Song G, Liu S, Sun D, et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cellular & molecular immunology. 2020;17(5):533-5.
62. Zheng H-Y, Zhang M, Yang C-X, Zhang N, Wang X-C, Yang X-P, et al. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cellular & molecular immunology. 2020;17(5):541-3.
63. Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell. 2020;181(7):1489-501. e15.
64. Sharif N, Alzahrani KJ, Ahmed SN, Dey SK. Efficacy, immunogenicity and safety of COVID-19 vaccines: a systematic review and meta-analysis. Frontiers in Immunology. 2021:4149.
65. Logunov DY, Dolzhikova IV, Shcheblyakov DV, Tukhvatulin AI, Zubkova OV, Dzharullaeva AS, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. The Lancet. 2021;397(10275):671-81.
66. Voysey M, Clemens SAC, Madhi SA, Weckx LY, Folegatti PM, Aley PK, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. The Lancet. 2021;397(10269):99-111.
67. Emary KR, Golubchik T, Aley PK, Ariani CV, Angus B, Bibi S, et al. Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B. 1.1. 7): an exploratory analysis of a randomised controlled trial. The Lancet. 2021;397(10282):1351-62.
68. Sadoff J, Gray G, Vandebosch A, Cárdenas V, Shukarev G, Grinsztejn B, et al. Safety and efficacy of single-dose Ad26. COV2. S vaccine against Covid-19. New England Journal of Medicine. 2021;384(23):2187-201.
69. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. New England journal of medicine. 2020.
70. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. New England journal of medicine. 2020.
71. Dagan N, Barda N, Kepten E, Miron O, Perchik S, Katz MA, et al. BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting. New England Journal of Medicine. 2021.
72. Funk CD, Laferrière C, Ardakani A. A snapshot of the global race for vaccines targeting SARS-CoV-2 and the COVID-19 pandemic. Frontiers in pharmacology. 2020;11:937.
73. McDonald I, Murray SM, Reynolds CJ, Altmann DM, Boyton RJ. Comparative systematic review and meta-analysis of reactogenicity, immunogenicity and efficacy of vaccines against SARS-CoV-2. npj Vaccines. 2021;6(1):1-14.
74. Zhang Y, Belayachi J, Yang Y, Fu Q, Rodewald L, Li H, et al. Real-world study of the effectiveness of BBIBP-CorV (Sinopharm) COVID-19 vaccine in the Kingdom of Morocco. medRxiv. 2022.
75. Heath PT, Galiza EP, Baxter DN, Boffito M, Browne D, Burns F, et al. Safety and efficacy of NVX-CoV2373 Covid-19 vaccine. New England Journal of Medicine. 2021;385(13):1172-83.
76. Tanriover MD, Doğanay HL, Akova M, Güner HR, Azap A, Akhan S, et al. Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. The Lancet. 2021;398(10296):213-22.
77. Fadlyana E, Rusmil K, Tarigan R, Rahmadi AR, Prodjosoewojo S, Sofiatin Y, et al. A phase III, observer-blind, randomized, placebo-controlled study of the efficacy, safety, and immunogenicity of SARS-CoV-2 inactivated vaccine in healthy adults aged 18–59 years: An interim analysis in Indonesia. Vaccine. 2021;39(44):6520-8.
78. Palacios R, Batista AP, Albuquerque CSN, Patiño EG, Santos JdP, Tilli Reis Pessoa Conde M, et al. Efficacy and safety of a COVID-19 inactivated vaccine in healthcare professionals in Brazil: the PROFISCOV study. 2021.
79. Ahmed TI, Rishi S, Irshad S, Aggarwal J, Happa K, Mansoor S. Inactivated vaccine Covaxin/BBV152: A systematic review. Frontiers in Immunology. 2022;13.
80. See I, Lale A, Marquez P, Streiff MB, Wheeler AP, Tepper NK, et al. Case Series of Thrombosis With Thrombocytopenia Syndrome After COVID-19 Vaccination-United States, December 2020 to August 2021. Ann Intern Med. 2022;175(4):513-22.
81. Hanson KE, Goddard K, Lewis N, Fireman B, Myers TR, Bakshi N, et al. Incidence of Guillain-Barré Syndrome After COVID-19 Vaccination in the Vaccine Safety Datalink. JAMA Netw Open. 2022;5(4):e228879.
82. Folegatti PM, Ewer KJ, Aley PK, Angus B, Becker S, Belij-Rammerstorfer S, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. The Lancet. 2020;396(10249):467-78.
83. Logunov DY, Dolzhikova IV, Zubkova OV, Tukhvatulin AI, Shcheblyakov DV, Dzharullaeva AS, et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. The Lancet. 2020;396(10255):887-97.
84. Ramasamy MN, Minassian AM, Ewer KJ, Flaxman AL, Folegatti PM, Owens DR, et al. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. The Lancet. 2020;396(10267):1979-93.
85. Zhu F-C, Li Y-H, Guan X-H, Hou L-H, Wang W-J, Li J-X, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. The Lancet. 2020;395(10240):1845-54.
86. Zhu F-C, Guan X-H, Li Y-H, Huang J-Y, Jiang T, Hou L-H, et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. The Lancet. 2020;396(10249):479-88.
87. Mulligan MJ, Lyke KE, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature. 2020;586(7830):589-93.
88. Walsh EE, Frenck Jr RW, Falsey AR, Kitchin N, Absalon J, Gurtman A, et al. Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates. New England Journal of Medicine. 2020;383(25):2439-50.
89. D’agostino V, Caranci F, Negro A, Piscitelli V, Tuccillo B, Fasano F, et al. A rare case of cerebral venous thrombosis and disseminated intravascular coagulation temporally associated to the COVID-19 vaccine administration. Journal of personalized medicine. 2021;11(4):285.
90. Bayas A, Menacher M, Christ M, Behrens L, Rank A, Naumann M. Bilateral superior ophthalmic vein thrombosis, ischaemic stroke, and immune thrombocytopenia after ChAdOx1 nCoV-19 vaccination. The Lancet. 2021;397(10285):e11.
91. Blauenfeldt RA, Kristensen SR, Ernstsen SL, Kristensen CCH, Simonsen CZ, Hvas AM. Thrombocytopenia with acute ischemic stroke and bleeding in a patient newly vaccinated with an adenoviral vector‐based COVID‐19 vaccine. Journal of Thrombosis and Haemostasis. 2021;19(7):1771-5.
92. Greinacher A, Thiele T, Warkentin TE, Weisser K, Kyrle PA, Eichinger S. Thrombotic thrombocytopenia after ChAdOx1 nCov-19 vaccination. New England Journal of Medicine. 2021;384(22):2092-101.
93. Schultz NH, Sørvoll IH, Michelsen AE, Munthe LA, Lund-Johansen F, Ahlen MT, et al. Thrombosis and thrombocytopenia after ChAdOx1 nCoV-19 vaccination. New England journal of medicine. 2021;384(22):2124-30.
94. Scully M, Singh D, Lown R, Poles A, Solomon T, Levi M, et al. Pathologic antibodies to platelet factor 4 after ChAdOx1 nCoV-19 vaccination. New England Journal of Medicine. 2021;384(23):2202-11.
95. See I, Su JR, Lale A, Woo EJ, Guh AY, Shimabukuro TT, et al. US case reports of cerebral venous sinus thrombosis with thrombocytopenia after Ad26. COV2. S vaccination, March 2 to April 21, 2021. Jama. 2021;325(24):2448-56.
96. Muir K-L, Kallam A, Koepsell SA, Gundabolu K. Thrombotic thrombocytopenia after Ad26. COV2. S vaccination. New England Journal of Medicine. 2021;384(20):1964-5.
97. Elberry MH, Abdelgawad HAH, Hamdallah A, Abdella WS, Ahmed AS, Ghaith HS, et al. A systematic review of vaccine-induced thrombotic thrombocytopenia in individuals who received COVID-19 adenoviral-vector-based vaccines. Journal of thrombosis and thrombolysis. 2022:1-26.
98. Power JR, Keyt LK, Adler ED. Myocarditis following COVID-19 vaccination: incidence, mechanisms, and clinical considerations. Expert Review of Cardiovascular Therapy. 2022:1-11.
99. Witberg G, Barda N, Hoss S, Richter I, Wiessman M, Aviv Y, et al. Myocarditis after Covid-19 vaccination in a large health care organization. New England Journal of Medicine. 2021.
100. Vojdani A, Kharrazian D. Potential antigenic cross-reactivity between SARS-CoV-2 and human tissue with a possible link to an increase in autoimmune diseases. Clinical Immunology (Orlando, Fla). 2020;217:108480.
101. Kanduc D, Shoenfeld Y. Molecular mimicry between SARS-CoV-2 spike glycoprotein and mammalian proteomes: implications for the vaccine. Immunologic research. 2020;68(5):310-3.
102. Kanduc D, Shoenfeld Y. On the molecular determinants of the SARS-CoV-2 attack. Clinical Immunology (Orlando, Fla). 2020;215:108426.
103. Vojdani A, Vojdani E, Kharrazian D. Reaction of human monoclonal antibodies to SARS-CoV-2 proteins with tissue antigens: implications for autoimmune diseases. Frontiers in Immunology. 2021:3679.
104. Levin D, Shimon G, Fadlon-Derai M, Gershovitz L, Shovali A, Sebbag A, et al. Myocarditis following COVID-19 vaccination–a case series. Vaccine. 2021;39(42):6195-200.
105. Finsterer J. Neurological side effects of SARS‐CoV‐2 vaccinations. Acta Neurologica Scandinavica. 2022;145(1):5-9.
106. Seirafianpour F, Pourriyahi H, Gholizadeh Mesgarha M, Pour Mohammad A, Shaka Z, Goodarzi A. A systematic review on mucocutaneous presentations after COVID‐19 vaccination and expert recommendations about vaccination of important immune‐mediated dermatologic disorders. Dermatologic Therapy. 2022:e15461.
107. Zheng H, Zhang T, Xu Y, Lu X, Sang X. Autoimmune hepatitis after COVID-19 vaccination. Frontiers in Immunology. 2022;13.
108. Ehrenfeld M, Tincani A, Andreoli L, Cattalini M, Greenbaum A, Kanduc D, et al. Covid-19 and autoimmunity. Autoimmunity reviews. 2020;19(8):102597.
109. Bowlus CL, Gershwin ME. The diagnosis of primary biliary cirrhosis. Autoimmunity reviews. 2014;13(4-5):441-4.
110. Shoenfeld Y, Agmon-Levin N. ‘ASIA’–autoimmune/inflammatory syndrome induced by adjuvants. Journal of autoimmunity. 2011;36(1):4-8.
111. van Riel D, de Wit E. Next-generation vaccine platforms for COVID-19. Nature materials. 2020;19(8):810-2.
112. Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34(5):637-50.
113. McKee AS, Munks MW, MacLeod MK, Fleenor CJ, Van Rooijen N, Kappler JW, et al. Alum induces innate immune responses through macrophage and mast cell sensors, but these sensors are not required for alum to act as an adjuvant for specific immunity. The Journal of Immunology. 2009;183(7):4403-14.
114. Ndeupen S, Qin Z, Jacobsen S, Bouteau A, Estanbouli H, Igyártó BZ. The mRNA-LNP platform's lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory. Iscience. 2021;24(12):103479.
115. Vanderlugt CL, Miller SD. Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nature Reviews Immunology. 2002;2(2):85-95.
116. Powell A, Black M. Epitope spreading: protection from pathogens, but propagation of autoimmunity? Clinical and experimental dermatology. 2001;26(5):427-33.
117. Pacheco Y, Acosta-Ampudia Y, Monsalve DM, Chang C, Gershwin ME, Anaya J-M. Bystander activation and autoimmunity. Journal of autoimmunity. 2019;103:102301.
118. Salemi S, D'Amelio R. Could autoimmunity be induced by vaccination? International reviews of immunology. 2010;29(3):247-69.
119. Vadalà M, Poddighe D, Laurino C, Palmieri B. Vaccination and autoimmune diseases: is prevention of adverse health effects on the horizon? EPMA Journal. 2017;8:295-311.
120. Terziroli Beretta-Piccoli B, Mieli-Vergani G, Vergani D. Autoimmune Hepatitis: Serum Autoantibodies in Clinical Practice. Clinical reviews in allergy & immunology. 2021:1-14.
121. Lohse AW, Chazouilleres O, Dalekos G, Drenth J, Heneghan M, Hofer H, et al. EASL clinical practice guidelines: autoimmune hepatitis. J Hepatol. 2015;63(4):971-1004.
122. Assis DN. Immunopathogenesis of autoimmune hepatitis. Clinical Liver Disease. 2020;15(3):129.
123. Mieli-Vergani G, Vergani D, Czaja AJ, Manns MP, Krawitt EL, Vierling JM, et al. Autoimmune hepatitis. Nature Reviews Disease Primers. 2018;4(1):1-21.
124. Balmer ML, Slack E, De Gottardi A, Lawson MA, Hapfelmeier S, Miele L, et al. The liver may act as a firewall mediating mutualism between the host and its gut commensal microbiota. Science translational medicine. 2014;6(237):237ra66-ra66.
125. Bonito AJ, Aloman C, Fiel MI, Danzl NM, Cha S, Weinstein EG, et al. Medullary thymic epithelial cell depletion leads to autoimmune hepatitis. The Journal of clinical investigation. 2013;123(8):3510-24.
126. Doherty DG. Immunity, tolerance and autoimmunity in the liver: A comprehensive review. Journal of autoimmunity. 2016;66:60-75.
127. Liberal R, Grant CR, Mieli-Vergani G, Vergani D. Autoimmune hepatitis: a comprehensive review. Journal of autoimmunity. 2013;41:126-39.
128. Buitrago-Molina LE, Pietrek J, Noyan F, Schlue J, Manns MP, Wedemeyer H, et al. Treg-specific IL-2 therapy can reestablish intrahepatic immune regulation in autoimmune hepatitis. Journal of Autoimmunity. 2021;117:102591.
129. Czaja AJ. Exploring the pathogenic role and therapeutic implications of interleukin 2 in autoimmune hepatitis. Digestive Diseases and Sciences. 2021;66(8):2493-512.
130. Lim TY, Martinez-Llordella M, Kodela E, Gray E, Heneghan MA, Sanchez-Fueyo A. Low dose interleukin-2 for refractory autoimmune hepatitis. Hepatology. 2018;68(4):1649-52.
131. Liberal R, Grant CR, Holder BS, Ma Y, Mieli‐Vergani G, Vergani D, et al. The impaired immune regulation of autoimmune hepatitis is linked to a defective galectin‐9/tim‐3 pathway. Hepatology. 2012;56(2):677-86.
132. Longhi MS, Mitry RR, Samyn M, Scalori A, Hussain MJ, Quaglia A, et al. Vigorous activation of monocytes in juvenile autoimmune liver disease escapes the control of regulatory T‐cells. Hepatology. 2009;50(1):130-42.
133. Tagawa Y-i, Sekikawa K, Iwakura Y. Suppression of concanavalin A-induced hepatitis in IFN-gamma (-/-) mice, but not in TNF-alpha (-/-) mice: role for IFN-gamma in activating apoptosis of hepatocytes. The Journal of Immunology. 1997;159(3):1418-28.
134. Kusters S, Gantner F, Kunstle G, Tiegs G. Interferon gamma plays a critical role in T cell-dependent liver injury in mice initiated by concanavalin A. Gastroenterology. 1996;111(2):462-71.
135. Mizuhara H, Uno M, Seki N, Yamashita M, Yamaoka M, Ogawa T, et al. Critical involvement of interferon γ in the pathogenesis of T‐cell activation‐associated hepatitis and regulatory mechanisms of interleukin‐6 for the manifestations of hepatitis. Hepatology. 1996;23(6):1608-15.
136. Nicoletti F, Di Marco R, Zaccone P, Salvaggio A, Magro G, Bendtzen K, et al. Murine concanavalin A–induced hepatitis is prevented by interleukin 12 (IL‐12) antibody and exacerbated by exogenous IL‐12 through an interferon‐γ–dependent mechanism. Hepatology. 2000;32(4):728-33.
137. Lafdil F, Wang H, Park O, Zhang W, Moritoki Y, Yin S, et al. Myeloid STAT3 inhibits T cell-mediated hepatitis by regulating T helper 1 cytokine and interleukin-17 production. Gastroenterology. 2009;137(6):2125-35. e2.
138. Nagata T, Mckinley L, Peschon JJ, Alcorn JF, Aujla SJ, Kolls JK. Requirement of IL-17RA in Con A induced hepatitis and negative regulation of IL-17 production in mouse T cells. The Journal of Immunology. 2008;181(11):7473-9.
139. Zhao L, Tang Y, You Z, Wang Q, Liang S, Han X, et al. Interleukin-17 contributes to the pathogenesis of autoimmune hepatitis through inducing hepatic interleukin-6 expression. PloS one. 2011;6(4):e18909.
140. Qin B, Li J, Liang Y, Yang Z, Zhong R. The association between Cytotoxic T Lymphocyte Associated Antigen-4, Fas, Tumour Necrosis Factor-α gene polymorphisms and autoimmune hepatitis: A meta-analysis. Digestive and Liver Disease. 2014;46(6):541-8.
141. Li S, Huang X, Zhong H, Chen Z, Peng Q, Deng Y, et al. Tumour necrosis factor alpha (TNF-α) genetic polymorphisms and the risk of autoimmune liver disease: a meta-analysis. Journal of genetics. 2013;92(3):617-28.
142. Cookson S, Constantini PK, Clare M, Underhill JA, Bernal W, Czaja AJ, et al. Frequency and nature of cytokine gene polymorphisms in type 1 autoimmune hepatitis. Hepatology. 1999;30(4):851-6.
143. Czaja AJ, Cookson S, Constantini PK, Clare M, Underhill JA, Donaldson PT. Cytokine polymorphisms associated with clinical features and treatment outcome in type 1 autoimmune hepatitis. Gastroenterology. 1999;117(3):645-52.
144. Liberal R, Grant CR, Ma Y, Csizmadia E, Jiang ZG, Heneghan MA, et al. CD39 mediated regulation of Th17-cell effector function is impaired in juvenile autoimmune liver disease. Journal of autoimmunity. 2016;72:102-12.
145. Longhi MS, Ma Y, Bogdanos DP, Cheeseman P, Mieli-Vergani G, Vergani D. Impairment of CD4+ CD25+ regulatory T-cells in autoimmune liver disease. Journal of hepatology. 2004;41(1):31-7.
146. Longhi MS, Hussain MJ, Mitry RR, Arora SK, Mieli-Vergani G, Vergani D, et al. Functional study of CD4+ CD25+ regulatory T cells in health and autoimmune hepatitis. The Journal of Immunology. 2006;176(7):4484-91.
147. Grant CR, Liberal R, Holder BS, Cardone J, Ma Y, Robson SC, et al. Dysfunctional CD39POS regulatory T cells and aberrant control of T‐helper type 17 cells in autoimmune hepatitis. Hepatology. 2014;59(3):1007-15.
148. Mueller DL. Mechanisms maintaining peripheral tolerance. Nature immunology. 2010;11(1):21-7.
149. Taylor SA, Assis DN, Mack CL, editors. The contribution of B cells in autoimmune liver diseases. Seminars in liver disease; 2019: Thieme Medical Publishers.
150. Zulfiqar A-A, Lorenzo-Villalba N, Hassler P, Andrès E. Immune thrombocytopenic purpura in a patient with Covid-19. New England Journal of Medicine. 2020;382(18):e43.
151. Bowles L, Platton S, Yartey N, Dave M, Lee K, Hart DP, et al. Lupus anticoagulant and abnormal coagulation tests in patients with Covid-19. New England Journal of Medicine. 2020;383(3):288-90.
152. Toscano G, Palmerini F, Ravaglia S, Ruiz L, Invernizzi P, Cuzzoni MG, et al. Guillain–Barré syndrome associated with SARS-CoV-2. New England Journal of Medicine. 2020;382(26):2574-6.
153. Teijaro JR, Farber DL. COVID-19 vaccines: modes of immune activation and future challenges. Nature Reviews Immunology. 2021;21(4):195-7.
154. Berry P, Smith-Laing G. Hepatitis A vaccine associated with autoimmune hepatitis. World journal of gastroenterology: WJG. 2007;13(15):2238.
155. Sasaki T, Suzuki Y, Ishida K, Kakisaka K, Abe H, Sugai T, et al. Autoimmune hepatitis following influenza virus vaccination: two case reports. Medicine. 2018;97(30).
156. Boettler T, Csernalabics B, Salié H, Luxenburger H, Wischer L, Salimi Alizei E, et al. SARS-CoV-2 vaccination can elicit a CD8 T-cell dominant hepatitis. J Hepatol. 2022;77(3):653-9.
157. Camacho-Domínguez L, Rodríguez Y, Polo F, Gutierrez JCR, Zapata E, Rojas M, et al. COVID-19 vaccine and autoimmunity. A new case of autoimmune hepatitis and review of the literature. Journal of translational autoimmunity. 2022:100140.
158. Cao Z, Gui H, Sheng Z, Xin H, Xie Q. Exacerbation of autoimmune hepatitis after COVID‐19 vaccination. Hepatology (Baltimore, Md). 2022;75(3):757.
159. Clayton-Chubb D, Schneider D, Freeman E, Kemp W, Roberts SK. Autoimmune hepatitis developing after the ChAdOx1 nCoV-19 (Oxford-AstraZeneca) vaccine. Journal of Hepatology. 2021;75(5):1249-50.
160. Erard D, Villeret F, Lavrut P-M, Dumortier J. Autoimmune hepatitis developing after COVID 19 vaccine: presumed guilty? Clinics and Research in Hepatology and Gastroenterology. 2022;46(3):101841.
161. Ferronato M, Lenzi M, Muratori L. Liver injury with autoimmune features after vaccination against SARS-CoV-2: The verdict is still open. Eur J Intern Med. 2023;108:108-10.
162. Garrido I, Lopes S, Simões MS, Liberal R, Lopes J, Carneiro F, et al. Autoimmune hepatitis after COVID-19 vaccine–more than a coincidence. Journal of Autoimmunity. 2021;125:102741.
163. Ghielmetti M, Schaufelberger HD, Mieli-Vergani G, Cerny A, Dayer E, Vergani D, et al. Acute autoimmune-like hepatitis with atypical anti-mitochondrial antibody after mRNA COVID-19 vaccination: a novel clinical entity? Journal of Autoimmunity. 2021;123:102706.
164. Ghorbani H, Rouhi T, Vosough Z, Shokri-Shirvani J. Drug-induced hepatitis after Sinopharm COVID-19 vaccination: A case study of a 62-year-old patient. International Journal of Surgery Case Reports. 2022;93:106926.
165. Goulas A, Kafiri G, Kranidioti H, Manolakopoulos S. A typical autoimmune hepatitis (AIH) case following Covid-19 mRNA vaccination. More than a coincidence? Liver International: Official Journal of the International Association for the Study of the Liver. 2021.
166. Hasegawa N, Matsuoka R, Ishikawa N, Endo M, Terasaki M, Seo E, et al. Autoimmune hepatitis with history of HCV treatment triggered by COVID-19 vaccination: case report and literature review. Clinical Journal of Gastroenterology. 2022;15(4):791-5.
167. Izagirre A, Arzallus T, Garmendia M, Torrente S, Castiella A, Zapata EM. Autoimmune hepatitis following COVID-19 vaccination. Journal of Autoimmunity. 2022.
168. Lee SK, Kwon JH, Yoon N, Lee SH, Sung PS. Immune-mediated liver injury represented as overlap syndrome after SARS-CoV-2 vaccination. Journal of hepatology. 2022.
169. Londoño MC, Gratacós-Ginès J, Sáez-Peñataro J. Another case of autoimmune hepatitis after SARS-CoV-2 vaccination - still casualty? J Hepatol. 2021;75(5):1248-9.
170. Mahalingham A, Duckworth A, Griffiths WJH. First report of post-transplant autoimmune hepatitis recurrence following SARS-CoV-2 mRNA vaccination. Transpl Immunol. 2022;72:101600.
171. Palla P, Vergadis C, Sakellariou S, Androutsakos T. Autoimmune hepatitis after COVID‐19 vaccination: A rare adverse effect? Hepatology (Baltimore, Md). 2022;75(2):489.
172. Pinazo-Bandera JM, Hernández-Albújar A, García-Salguero AI, Arranz-Salas I, Andrade RJ, Robles-Díaz M. Acute hepatitis with autoimmune features after COVID-19 vaccine: coincidence or vaccine-induced phenomenon? Gastroenterol Rep (Oxf). 2022;10:goac014.
173. Rela M, Jothimani D, Vij M, Rajakumar A, Rammohan A. Auto-immune hepatitis following COVID vaccination. J Autoimmun. 2021;123:102688.
174. Shroff H, Satapathy SK, Crawford JM, Todd NJ, VanWagner LB. Liver injury following SARS-CoV-2 vaccination: a multicenter case series. Journal of Hepatology. 2022;76(1):211-4.
175. Tan CK, Wong YJ, Wang LM, Ang TL, Kumar R. Autoimmune hepatitis following COVID-19 Vaccination: true causality or mere association? Journal of hepatology. 2021;75(5):1250-2.
176. Torrente S, Castiella A, Garmendia M, Zapata E. Probable autoimmune hepatitis reactivated after COVID-19 vaccination. Gastroenterol Hepatol. 2022;45 Suppl 1:115-6.
177. Tun GSZ, Gleeson D, Al-Joudeh A, Dube A. Immune-mediated hepatitis with the Moderna vaccine, no longer a coincidence but confirmed. Journal of Hepatology. 2022;76(3):747-9.
178. Vuille-Lessard É, Montani M, Bosch J, Semmo N. Autoimmune hepatitis triggered by SARS-CoV-2 vaccination. Journal of autoimmunity. 2021;123:102710.
179. Yoshida Y, Iwata N, Ishii Y, Hinoda Y, Endo T. Autoimmune Hepatitis Following mRNA COVID-19 Vaccination in a Very Old Patient With Preexisting Sjögren’s Syndrome: A Case Report. Cureus. 2022;14(10).
180. Zafar M, Gordon K, Macken L, Parvin J, Heath S, Whibley M, et al. COVID-19 Vaccination-Induced Cholangiopathy and Autoimmune Hepatitis: A Series of Two Cases. Cureus. 2022;14(10).
181. Zhou T, Fronhoffs F, Dold L, Strassburg CP, Weismüller TJ. New-onset autoimmune hepatitis following mRNA COVID-19 vaccination in a 36-year-old woman with primary sclerosing cholangitis - should we be more vigilant? J Hepatol. 2022;76(1):218-20.
182. Codoni G, Kirchner T, Engel B, Villamil AM, Efe C, Stättermayer AF, et al. Histological and serological features of acute liver injury after SARS-CoV-2 vaccination. JHEP Rep. 2023;5(1):100605.
183. Efe C, Kulkarni AV, Terziroli Beretta-Piccoli B, Magro B, Stättermayer A, Cengiz M, et al. Liver injury after SARS-CoV-2 vaccination: Features of immune-mediated hepatitis, role of corticosteroid therapy and outcome. Hepatology. 2022;76(6):1576-86.
184. Efe C, Heurgué-Berlot A, Ozaslan E, Purnak T, Thiéfin G, Simsek H, et al. Late autoimmune hepatitis after hepatitis C therapy. Eur J Gastroenterol Hepatol. 2013;25(11):1308-11.
185. Ohira H, Abe K, Takahashi A, Watanabe H. Autoimmune hepatitis: recent advances in the pathogenesis and new diagnostic guidelines in Japan. Intern Med. 2015;54(11):1323-8.
186. Andrade RJ, Chalasani N, Björnsson ES, Suzuki A, Kullak-Ublick GA, Watkins PB, et al. Drug-induced liver injury. Nat Rev Dis Primers. 2019;5(1):58.
187. Tiniakos DG, Brain JG, Bury YA. Role of Histopathology in Autoimmune Hepatitis. Dig Dis. 2015;33 Suppl 2:53-64.
188. Bedossa P, Poynard T. An algorithm for the grading of activity in chronic hepatitis C. The METAVIR Cooperative Study Group. Hepatology. 1996;24(2):289-93.
189. Ishak K, Baptista A, Bianchi L, Callea F, De Groote J, Gudat F, et al. Histological grading and staging of chronic hepatitis. J Hepatol. 1995;22(6):696-9.
190. Cao Z, Gui H, Sheng Z, Xin H, Xie Q. Letter to the editor: Exacerbation of autoimmune hepatitis after COVID-19 vaccination. Hepatology. 2022;75(3):757-9.
191. Zin Tun GS, Gleeson D, Al-Joudeh A, Dube A. Immune-mediated hepatitis with the Moderna vaccine, no longer a coincidence but confirmed. J Hepatol. 2022;76(3):747-9.
192. Lui DTW, Lee KK, Lee CH, Lee ACH, Hung IFN, Tan KCB. Development of Graves' disease after SARS-CoV-2 mRNA vaccination: a case report and literature review. Frontiers in public health. 2021;9:778964.
193. Rubinstein TJ. Thyroid eye disease following COVID-19 vaccine in a patient with a history Graves’ disease: a case report. Ophthalmic plastic and reconstructive surgery. 2021;37(6):e221.
194. İremli BG, Şendur SN, Ünlütürk U. Three cases of subacute thyroiditis following SARS-CoV-2 vaccine: postvaccination ASIA syndrome. The Journal of Clinical Endocrinology & Metabolism. 2021;106(9):2600-5.
195. Jawed M, Khalid A, Rubin M, Shafiq R, Cemalovic N, editors. Acute immune thrombocytopenia (ITP) following COVID-19 vaccination in a patient with previously stable ITP. Open Forum Infectious Diseases; 2021: Oxford University Press US.
196. Gaignard M-E, Lieberherr S, Schoenenberger A, Benz R. Autoimmune hematologic disorders in two patients after mRNA COVID-19 vaccine. Hemasphere. 2021;5(8).
197. Kim G, Choi E-J, Park H-S, Lee J-H, Lee J-H, Lee K-H. A case report of immune thrombocytopenia after ChAdOx1 nCoV-19 vaccination. Journal of Korean Medical Science. 2021;36(43).
198. Chittal A, Rao S, Lakra P, Nacu N, Haas C. A case of COVID-19 vaccine-induced thrombotic thrombocytopenia. Journal of Community Hospital Internal Medicine Perspectives. 2021;11(6):776-8.
199. Gadi SR, Brunker PA, Al‐Samkari H, Sykes DB, Saff RR, Lo J, et al. Severe autoimmune hemolytic anemia following receipt of SARS‐CoV‐2 mRNA vaccine. Transfusion. 2021;61(11):3267-71.
200. Al Aoun S, Motabi I. Cold agglutinin disease after COVID‐19 vaccine. British Journal of Haematology. 2021;195(5):650.
201. Tabata S, Hosoi H, Murata S, Takeda S, Mushino T, Sonoki T. Severe aplastic anemia after COVID-19 mRNA vaccination: Causality or coincidence? Journal of autoimmunity. 2022;126:102782.
202. An Q-j, Qin D-a, Pei J-x. Reactive arthritis after COVID-19 vaccination. Human vaccines & immunotherapeutics. 2021;17(9):2954-6.
203. Mücke VT, Knop V, Mücke MM, Ochsendorf F, Zeuzem S. First description of immune complex vasculitis after COVID-19 vaccination with BNT162b2: a case report. BMC Infectious Diseases. 2021;21:1-6.
204. Maye JA, Chong HP, Rajagopal V, Petchey W. Reactivation of IgA vasculitis following COVID-19 vaccination. BMJ Case Reports CP. 2021;14(11):e247188.
205. Nasuelli NA, De Marchi F, Cecchin M, De Paoli I, Onorato S, Pettinaroli R, et al. A case of acute demyelinating polyradiculoneuropathy with bilateral facial palsy after ChAdOx1 nCoV-19 vaccine. Neurological Sciences. 2021;42:4747-9.
206. Tagliaferri AR, Narvaneni S, Grist W. A case of COVID-19 vaccine causing a myasthenia gravis crisis. Cureus. 2021;13(6).
207. Patil S, Patil A. Systemic lupus erythematosus after COVID‐19 vaccination: A case report. Journal of Cosmetic Dermatology. 2021;20(10):3103.
208. Capassoni M, Ketabchi S, Cassisa A, Caramelli R, Molinu AA, Galluccio F, et al. AstraZeneca (AZD1222) COVID‐19 vaccine‐associated adverse drug event: a case report. Journal of Medical Virology. 2021;93(10):5718.
209. Conticini E, d'Alessandro M, Bergantini L, Bargagli E, Gentili F, Mazzei MA, et al. Relapse of microscopic polyangiitis after vaccination against COVID‐19: A case report. Journal of Medical Virology. 2021;93(12):6439.
210. Sauret A, Stievenart J, Smets P, Olagne L, Guelon B, Aumaître O, et al. Case of giant cell arteritis after SARS-CoV-2 vaccination: a particular phenotype? The Journal of Rheumatology. 2022;49(1):120-.
Files | ||
Issue | Vol 7, No 3 (2024) | |
Section | Review Article | |
DOI | https://doi.org/10.18502/igj.v7i3.17883 | |
Keywords | ||
Autoimmune Hepatitis COVID-19 Hepatology SARS-CoV-2 Vaccination |
Rights and permissions | |
![]() |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |