Review Article

Epigenetic Regulation of T helper Cells Differentiation

Abstract

CD4+ T helper (Th) cells are part of the adaptive immune system, which are responsible for activating other immune cells, such as B cells, CD8+ T cells, macrophages, mast cells, neutrophils, eosinophils, and basophils. Differentiation of CD4+ T cells is under the impression of cytokines and stimulation of the T cell receptor by different antigens. The pattern of cytokine secretion can be altered under specific conditions from one cell line to another, indicating that Th cells have plasticity. In fact, active and master regulators collaborate with transcription factors like signal transducer and activator of transcriptions (STATs) in developing the differentiation process. The signals provided by cytokines activate specific transcription factors in each cell line. During this process, epigenetic modifications are actively involved. Epigenetics are defined as heritable alterations in the regulation of gene expression without any change in the DNA strand, and includes DNA methylation, histone modification, and non-coding RNAs. The plasticity of CD4+ T cell in differentiation to multiple subsets allows Th cells to exhibit the best immune response possible against the target microorganism. Failure to respond appropriately to multiple types of microorganisms can lead to disease. In this review we have collected recent advances in understanding the role of epigenetic regulatory mechanisms in differentiation of Th cells and, thereby, the commitment of CD4+ T cells to a particular lineage to raise an appropriate response against variety of microorganisms.

1. Ashfaq H, Soliman H, Saleh M, El-Matbouli M. CD4: a vital player in the teleost fish immune system. Vet Res. 2019;50(1):1.
2. Murphy KM, Stockinger B. Effector T cell plasticity: flexibility in the face of changing circumstances. Nat Immunol. 2010;11(8):674.
3. Rautajoki KJ, Rautajoki KJ, Kyläniemi MK, Raghav SK, Rao K, Lahesmaa R. An insight into molecular mechanisms of human T helper cell differentiation. Ann Med. 2008;40(5):322–35.
4. O’Shea JJ, Paul WE. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science (80- ). 2010;327(5969):1098–102.
5. Angkasekwinai P. Th9 Cells in Allergic Disease. Curr Allergy Asthma Rep. 2019;19(5):29.
6. Maggi L, Mazzoni A, Cimaz R, Liotta F, Annunziato F, Cosmi L. Th17 and Th1 lymphocytes in oligoarticular juvenile idiopathic arthritis. Front Immunol. 2019;10.
7. Miyazaki Y, Nakayamada S, Kubo S, Nakano K, Iwata S, Miyagawa I, et al. Th22 cells promote osteoclast differentiation via production of IL-22 in rheumatoid arthritis. Front Immunol. 2018;9:2901.
8. LaMothe RA, Kolte PN, Vo T, Ferrari JD, Gelsinger TC, Wong J, et al. Tolerogenic Nanoparticles induce antigen-specific regulatory T cells and provide therapeutic efficacy and transferrable tolerance against experimental autoimmune encephalomyelitis. Front Immunol. 2018;9:281.
9. Crotty S. Do memory CD4 T cells keep their cell-type programming: plasticity versus fate commitment? Complexities of interpretation due to the heterogeneity of memory CD4 T cells, including T follicular helper cells. Cold Spring Harb Perspect Biol. 2018;10(3):a032102.
10. DuPage M, Bluestone JA. Harnessing the plasticity of CD4+ T cells to treat immune-mediated disease. Nat Rev Immunol. 2016;16(3):149.
11. Wilson CB, Rowell E, Sekimata M. Epigenetic control of T-helper-cell differentiation. Nat Rev Immunol. 2009;9(2):91.
12. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations. Annu Rev Immunol. 2009;28:445–89.
13. Ansel KM, Greenwald RJ, Agarwal S, Bassing CH, Monticelli S, Interlandi J, et al. Deletion of a conserved Il4 silencer impairs T helper type 1–mediated immunity. Nat Immunol. 2004;5(12):1251.
14. Zhu J. Transcriptional regulation of Th2 cell differentiation. Immunol Cell Biol. 2010;88(3):244–9.
15. Ivanov II, Zhou L, Littman DR. Transcriptional regulation of Th17 cell differentiation. In: Seminars in immunology. Elsevier; 2007. p. 409–17.
16. Kanno Y, Vahedi G, Hirahara K, Singleton K, O’Shea JJ. Transcriptional and epigenetic control of T helper cell specification: molecular mechanisms underlying commitment and plasticity. Annu Rev Immunol. 2012;30:707–31.
17. Jaenisch R, Bird A. Epigenetic regulation of gene expression : how the genome integrates intrinsic and environmental signals. 2003;33(march):245–54.
18. Burgio E, Piscitelli P, Colao A. Environmental Carcinogenesis and Transgenerational Transmission of Carcinogenic Risk: From Genetics to Epigenetics. Multidisciplinary Digital Publishing Institute; 2018.
19. Mazzio EA, Soliman KFA. Basic concepts of epigenetics: impact of environmental signals on gene expression. Epigenetics. 2012;7(2):119–30.
20. Delcuve GP, Rastegar M, Davie JR. Epigenetic control. J Cell Physiol. 2009;219(2):243–50.
21. Waddington CH. Canalization of development and the inheritance of acquired characters. Nature. 1942;150(3811):563.
22. Golbabapour S, Abdulla MA, Hajrezaei M. A Concise Review on Epigenetic Regulation : Insight into Molecular Mechanisms. 2011. 8661-8694 p.
23. McBryant SJ, Park Y-J, Abernathy SM, Laybourn PJ, Nyborg JK, Luger K. Preferential binding of the histone (H3-H4) 2 tetramer by NAP1 is mediated by the amino-terminal histone tails. J Biol Chem. 2003;278(45):44574–83.
24. Old RW, Woodland HR. Histone genes: not so simple after all. Cell. 1984;38(3):624–6.
25. Schvartzman JM, Thompson CB, Finley LWS. Metabolic regulation of chromatin modifications and gene expression. J Cell Biol. 2018;217(7):2247–59.
26. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693–705.
27. Chen L-F, Lin YT, Gallegos DA, Hazlett MF, Gómez-Schiavon M, Yang MG, et al. Enhancer Histone Acetylation Modulates Transcriptional Bursting Dynamics of Neuronal Activity-Inducible Genes. Cell Rep. 2019;26(5):1174–88.
28. Davie JR, Moniwa M. Control of chromatin remodeling. Crit Rev Eukaryot Gene Expr. 2000;10(3&4).
29. Tolsma TO, Hansen JC. Post-translational modifications and chromatin dynamics. Essays Biochem. 2019;63(1):89–96.
30. Längst G, Becker PB. Nucleosome remodeling: one mechanism, many phenomena? Biochim Biophys Acta (BBA)-Gene Struct Expr. 2004;1677(1–3):58–63.
31. Barski A, Cuddapah S, Cui K, Roh T-Y, Schones DE, Wang Z, et al. High-resolution profiling of histone methylations in the human genome. Cell. 2007;129(4):823–37.
32. Baretti M, Azad NS. The role of epigenetic therapies in colorectal cancer. Curr Probl Cancer. 2018;42(6):530–47.
33. O’Kane C, O’Connell M, Hyland E. Probing the role of histone modifications in the evolution of pathogenicity in Candida glabrata. Access Microbiol. 2019;1(1A).
34. Ehrlich M. DNA hypomethylation, cancer, the immunodeficiency, centromeric region instability, facial anomalies syndrome and chromosomal rearrangements. J Nutr. 2002;132(8):2424S–2429S.
35. Jara‐Espejo M, Peres Line SR. DNA G‐quadruplex stability, position and chromatin accessibility are associated with CpG island methylation. FEBS J. 2020;287(3):483–95.
36. Li C-Y, Wu Y, Qu Y-Z, Wang J-G. Effects of radiation damping on photorecombination of C 4+ ions for the KLL resonance. Phys Rev A. 2016;94(4):42702.
37. Clark AD, Nair N, Anderson AE, Thalayasingam N, Naamane N, Skelton AJ, et al. Lymphocyte DNA methylation mediates genetic risk at shared immune mediated disease loci. J Allergy Clin Immunol. 2020;
38. Kobayashi Y, Aizawa A, Takizawa T, Igarashi K, Hatada I, Arakawa H. Changes in DNA methylation in naïve T helper cells regulate the pathophysiological state in minimal-change nephrotic syndrome. BMC Res Notes. 2017;10(1):480.
39. Ballas ZK. The use of 5-azacytidine to establish constitutive interleukin 2-producing clones of the EL4 thymoma. J Immunol. 1984;133(1):7–9.
40. Young HA, Ghosh P, Ye J, Lederer J, Lichtman A, Gerard JR, et al. Differentiation of the T helper phenotypes by analysis of the methylation state of the IFN-gamma gene. J Immunol. 1994;153(8):3603–10.
41. Valapour M, Guo J, Schroeder JT, Keen J, Cianferoni A, Casolaro V, et al. Histone deacetylation inhibits IL4 gene expression in T cells. J Allergy Clin Immunol. 2002;109(2):238–45.
42. Bird JJ, Brown DR, Mullen AC, Moskowitz NH, Mahowald MA, Sider JR, et al. Helper T Cell Differentiation Is Controlled by the Cell Cycle. 1998;9:229–37.
43. Puniya BL, Todd RG, Mohammed A, Brown DM, Barberis M, Helikar T. A mechanistic computational model reveals that plasticity of CD4+ T cell differentiation is a function of cytokine composition and dosage. Front Physiol. 2018;9:878.
44. Usui T, Preiss JC, Kanno Y, Yao ZJ, Bream JH, O’Shea JJ, et al. T-bet regulates Th1 responses through essential effects on GATA-3 function rather than on IFNG gene acetylation and transcription. J Exp Med. 2006;203(3):755–66.
45. Townsend MJ, Weinmann AS, Matsuda JL, Salomon R, Farnham PJ, Biron CA, et al. T-bet regulates the terminal maturation and homeostasis of NK and Vα14i NKT cells. Immunity. 2004;20(4):477–94.
46. Hwang ES, Szabo SJ, Schwartzberg PL, Glimcher LH. T helper cell fate specified by kinase-mediated interaction of T-bet with GATA-3. Science (80- ). 2005;307(5708):430–3.
47. Djuretic IM, Levanon D, Negreanu V, Groner Y, Rao A, Ansel KM. Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells. Nat Immunol. 2007;8(2):145.
48. Mullen AC, Hutchins AS, High FA, Lee HW, Sykes KJ, Chodosh LA, et al. Hlx is induced by and genetically interacts with T-bet to promote heritable T H 1 gene induction. Nat Immunol. 2002;3(7):652.
49. Ansel KM, Djuretic I, Tanasa B, Rao A. Regulation of Th2 differentiation and Il4 locus accessibility. Annu Rev Immunol. 2006;24:607–56.
50. Amsen D, Antov A, Jankovic D, Sher A, Radtke F, Souabni A, et al. Direct regulation of Gata3 expression determines the T helper differentiation potential of Notch. Immunity. 2007;27(1):89–99.
51. van Panhuys N, Tang S-C, Prout M, Camberis M, Scarlett D, Roberts J, et al. In vivo studies fail to reveal a role for IL-4 or STAT6 signaling in Th2 lymphocyte differentiation. Proc Natl Acad Sci. 2008;105(34):12423–8.
52. Zhang Y, Siegel AM, Sun G, Dimaggio T, Freeman AF, Milner JD. Human TH9 differentiation is dependent on signal transducer and activator of transcription (STAT) 3 to restrain STAT1-mediated inhibition. J Allergy Clin Immunol. 2019;143(3):1108–18.
53. Kaplan MH. The transcription factor network in Th9 cells. In: Seminars in immunopathology. Springer; 2017. p. 11–20.
54. McGeachy MJ, Cua DJ. Th17 cell differentiation: the long and winding road. Immunity. 2008;28(4):445–53.
55. Zhou L, Lopes JE, Chong MMW, Ivanov II, Min R, Victora GD, et al. TGF-β-induced Foxp3 inhibits T H 17 cell differentiation by antagonizing RORγt function. Nature. 2008;453(7192):236.
56. Plank MW, Kaiko GE, Maltby S, Weaver J, Tay HL, Shen W, et al. Th22 cells form a distinct Th lineage from Th17 cells in vitro with unique transcriptional properties and Tbet-dependent Th1 plasticity. J Immunol. 2017;198(5):2182–90.
57. Steinman L. A brief history of T H 17, the first major revision in the T H 1/T H 2 hypothesis of T cell–mediated tissue damage. Nat Med. 2007;13(2):139.
58. Lee GR, Kim ST, Spilianakis CG, Fields PE, Flavell RA. T Helper Cell Differentiation : Regulation by cis Elements and Epigenetics. 2006;(April):369–79.
59. Hagihara Y, Yoshimatsu Y, Mikami Y, Takada Y, Mizuno S, Kanai T. Epigenetic regulation of T helper cells and intestinal pathogenicity. In: Seminars in immunopathology. Springer; 2019. p. 379–99.
60. Ito T, Hirose K, Nakajima H. Bidirectional roles of IL-22 in the pathogenesis of allergic airway inflammation. Allergol Int. 2019;68(1):4–8.
61. Troilo A, Grassi A, Petrone L, Cianchi F, Benagiano M, Della Bella C, et al. Intrinsic factor recognition promotes T helper 17/T helper 1 autoimmune gastric inflammation in patients with pernicious anemia. Oncotarget. 2019;10(30):2921.
62. Saravia J, Chapman NM, Chi H. Helper T cell differentiation. Cell Mol Immunol. 2019;16(7):634–43.
63. Acosta-Rodriguez E V, Rivino L, Geginat J, Jarrossay D, Gattorno M, Lanzavecchia A, et al. Surface phenotype and antigenic specificity of human interleukin 17–producing T helper memory cells. Nat Immunol. 2007;8(6):639.
64. Manel N, Unutmaz D, Littman DR. The differentiation of human T H-17 cells requires transforming growth factor-β and induction of the nuclear receptor RORγt. Nat Immunol. 2008;9(6):641.
65. Hatton RD, Harrington LE, Luther RJ, Wakefield T, Janowski KM, Oliver JR, et al. A distal conserved sequence element controls Ifng gene expression by T cells and NK cells. Immunity. 2006;25(5):717–29.
66. Li T, Jia L, Cao Y, Chen Q, Li C. OCEAN-C: mapping hubs of open chromatin interactions across the genome reveals gene regulatory networks. Genome Biol. 2018;19(1):54.
67. Jones B, Chen J. Inhibition of IFN‐γ transcription by site‐specific methylation during t helper cell development. EMBO J. 2006;25(11):2443–52.
68. Schoenborn JR, Dorschner MO, Sekimata M, Santer DM, Shnyreva M, Fitzpatrick DR, et al. Comprehensive epigenetic profiling identifies multiple distal regulatory elements directing transcription of the gene encoding interferon-γ. Nat Immunol. 2007;8(7):732.
69. Salerno F, Guislain A, Freen-van Heeren JJ, Nicolet BP, Young HA, Wolkers MC. Critical role of post-transcriptional regulation for IFN-γ in tumor-infiltrating T cells. Oncoimmunology. 2019;8(2):e1532762.
70. Chang S, Aune TM. Dynamic changes in histone-methylation’marks’ across the locus encoding interferon-γ during the differentiation of T helper type 2 cells. Nat Immunol. 2007;8(7):723.
71. Rowell E, Merkenschlager M, Wilson CB. Long-range regulation of cytokine gene expression. Curr Opin Immunol. 2008;20(3):272–80.
72. Shi M, Lin TH, Appell KC, Berg LJ. Janus-kinase-3-dependent signals induce chromatin remodeling at the Ifng locus during T helper 1 cell differentiation. Immunity. 2008;28(6):763–73.
73. Naoe Y, Setoguchi R, Akiyama K, Muroi S, Kuroda M, Hatam F, et al. Repression of interleukin-4 in T helper type 1 cells by Runx/Cbfβ binding to the Il4 silencer. J Exp Med. 2007;204(8):1749–55.
74. Chen G-Y, Osada H, Santamaria-Babi LF, Kannagi R. Interaction of GATA-3/T-bet transcription factors regulates expression of sialyl Lewis X homing receptors on Th1/Th2 lymphocytes. Proc Natl Acad Sci. 2006;103(45):16894–9.
75. Takemoto N, Koyano-Nakagawa N, Yokota T, Arai N, Miyatake S, Arai K. Th2-specific DNase I-hypersensitive sites in the murine IL-13 and IL-4 intergenic region. Int Immunol. 1998;10(12):1981–5.
76. Agarwal S, Rao A. Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation. Immunity. 1998;9(6):765–75.
77. Zhu K, Liang W, Ma Z, Xu D, Cao S, Lu X, et al. Necroptosis promotes cell-autonomous activation of proinflammatory cytokine gene expression. Cell Death Dis. 2018;9(5):500.
78. Tanaka S, Tsukada J, Suzuki W, Hayashi K, Tanigaki K, Tsuji M, et al. The interleukin-4 enhancer CNS-2 is regulated by Notch signals and controls initial expression in NKT cells and memory-type CD4 T cells. Immunity. 2006;24(6):689–701.
79. Schieck M, Sharma V, Michel S, Toncheva AA, Worth L, Potaczek DP, et al. A polymorphism in the TH 2 locus control region is associated with changes in DNA methylation and gene expression. Allergy. 2014 Sep;69(9):1171–80.
80. Mullen AC, Hutchins AS, Villarino A V, Lee HW, High FA, Cereb N, et al. Cell cycle controlling the silencing and functioning of mammalian activators. Curr Biol. 2001;11(21):1695–9.
81. Grogan JL, Mohrs M, Harmon B, Lacy DA, Sedat JW, Locksley RM. Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets. Immunity. 2001;14(3):205–15.
82. Tykocinski L-O, Hajkova P, Chang H-D, Stamm T, SÖzeri O, LÖhning M, et al. A critical control element for interleukin-4 memory expression in T helper lymphocytes. J Biol Chem. 2005;280(31):28177–85.
83. Fields PE, Lee GR, Kim ST, Bartsevich V V, Flavell RA. Th2-specific chromatin remodeling and enhancer activity in the Th2 cytokine locus control region. Immunity. 2004;21(6):865–76.
84. Makar KW, Pérez-Melgosa M, Shnyreva M, Weaver WM, Fitzpatrick DR, Wilson CB. Active recruitment of DNA methyltransferases regulates interleukin 4 in thymocytes and T cells. Nat Immunol. 2003;4(12):1183.
85. Hutchins AS, Mullen AC, Lee HW, Sykes KJ, High FA, Hendrich BD, et al. Gene silencing quantitatively controls the function of a developmental trans-activator. Mol Cell. 2002;10(1):81–91.
86. Lee DU, Agarwal S, Rao A. Th2 lineage commitment and efficient IL-4 production involves extended demethylation of the IL-4 gene. Immunity. 2002;16(5):649–60.
87. Li Y, Mu Z, Wang H, Liu J, Jiang F. The role of particulate matter on methylation of IFN-γ and IL-4 promoter genes in pediatric allergic rhinitis. Oncotarget. 2018;9(25):17406.
88. Sen S, He Z, Ghosh S, Dery KJ, Yang L, Zhang J, et al. PRMT1 Plays a Critical Role in Th17 Differentiation by Regulating Reciprocal Recruitment of STAT3 and STAT5. J Immunol. 2018;201(2):440–50.
89. Venkata R, Prakruthi L. Epigenetic Reprogramming at the Th2 locus. University of Cincinnati; 2018.
90. Yamashita M, Hirahara K, Shinnakasu R, Hosokawa H, Norikane S, Kimura MY, et al. Crucial role of MLL for the maintenance of memory T helper type 2 cell responses. Immunity. 2006;24(5):611–22.
91. Fields PE, Kim ST, Flavell RA. Cutting edge: changes in histone acetylation at the IL-4 and IFN-γ loci accompany Th1/Th2 differentiation. J Immunol. 2002;169(2):647–50.
92. Ikegami I, Takaki H, Kamiya S, Kamekura R, Ichimiya S. Bob1 enhances RORγt-mediated IL-17A expression in Th17 cells through interaction with RORγt. Biochem Biophys Res Commun. 2019;514(4):1167–71.
93. Akimzhanov AM, Yang XO, Dong C. Chromatin remodeling of interleukin-17 (IL-17)-IL-17F cytokine gene locus during inflammatory helper T cell differentiation. J Biol Chem. 2007;282(9):5969–72.
94. Dong C. T H 17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol. 2008;8(5):337.
95. Ecoeur F, Weiss J, Kaupmann K, Hintermann S, Orain D, Guntermann C. Antagonizing Retinoic acid-related-orphan receptor gamma Activity Blocks the T Helper 17/Interleukin-17 Pathway Leading to Attenuated Pro-inflammatory Human Keratinocyte and Skin Responses. Front Immunol. 2019;10:577.
96. Sin JH, Zuckerman C, Cortez JT, Eckalbar WL, Erle DJ, Anderson MS, et al. The epigenetic regulator ATF7ip inhibits Il2 expression, regulating Th17 responses. J Exp Med. 2019;jem-20182316.
97. Wang X, Yang Y, Ren D, Xia Y, He W, Wu Q, et al. JQ1, a bromodomain inhibitor, suppresses Th17 effectors by blocking p300‐mediated acetylation of RORγt. Br J Pharmacol. 2020;
98. Mantel P-Y, Ouaked N, Rückert B, Karagiannidis C, Welz R, Blaser K, et al. Molecular mechanisms underlying FOXP3 induction in human T cells. J Immunol. 2006;176(6):3593–602.
99. Kim H-P, Leonard WJ. CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation. J Exp Med. 2007;204(7):1543–51.
100. Do J, Zhong F, Huang AY, Van’t Hof WJ, Finney M, Laughlin MJ. Foxp3 expression in induced T regulatory cells derived from human umbilical cord blood vs. adult peripheral blood. Bone Marrow Transplant. 2018;53(12):1568.
101. Chakraborty S, Sa G. Development, maintenance and functions of CD8+ T-regulatory cells: Molecular orchestration of FOXP3 transcription. 2018;
102. Nagar M, Vernitsky H, Cohen Y, Dominissini D, Berkun Y, Rechavi G, et al. Epigenetic inheritance of DNA methylation limits activation-induced expression of FOXP3 in conventional human CD25− CD4+ T cells. Int Immunol. 2008;20(8):1041–55.
103. Zafari P, Yari K, Mostafaei S, Iranshahi N, Assar S, Fekri A, et al. Analysis of Helios gene expression and Foxp3 TSDR methylation in the newly diagnosed Rheumatoid Arthritis patients. Immunol Invest. 2018;47(6):632–42.
104. Wu Y, Zhao Y, Xu T, You L, Zhang H, Liu F. Alzheimer’s Disease Affects Severity of Asthma Through Methylation Control of Foxp3 Promoter. J Alzheimer’s Dis. 2019;(Preprint):1–9.
105. Liu Q, Du F, Huang W, Ding X, Wang Z, Yan F, et al. Epigenetic control of Foxp3 in intratumoral T-cells regulates growth of hepatocellular carcinoma. Aging (Albany NY). 2019;11(8):2343.
106. Shao Y, Chernaya V, Johnson C, Yang WY, Cueto R, Sha X, et al. Metabolic diseases downregulate the majority of histone modification enzymes, making a few upregulated enzymes novel therapeutic targets—“sand out and gold stays.” J Cardiovasc Transl Res. 2016;9(1):49–66.
107. Mishima Y, Sartor RB. Manipulating resident microbiota to enhance regulatory immune function to treat inflammatory bowel diseases. J Gastroenterol. 2019;1–11.
108. Moss RB, Moll T, El-Kalay M, Kohne C, Soo Hoo W, Encinas J, et al. Th1/Th2 cells in inflammatory disease states: therapeutic implications. Expert Opin Biol Ther. 2004;4(12):1887–96.
109. Romagnani S. Immunologic influences on allergy and the TH1/TH2 balance. J Allergy Clin Immunol. 2004;113(3):395–400.
110. Noack M, Miossec P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun Rev. 2014;13(6):668–77.
111. Nguyen KV. Potential epigenomic co-management in rare diseases and epigenetic therapy. Nucleosides, Nucleotides and Nucleic Acids. 2019;38(10):752–80.
112. Klisovic MI, Maghraby EA, Parthun MR, Guimond M, Sklenar AR, Whitman SP, et al. Depsipeptide (FR 901228) promotes histone acetylation, gene transcription, apoptosis and its activity is enhanced by DNA methyltransferase inhibitors in AML1/ETO-positive leukemic cells. Leukemia. 2003;17(2):350–8.
113. Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. 2004;429(May):457–63.
114. Constantinides PG, Jones PA, Gevers W. Functional striated muscle cells from non-myoblast precursors following 5-azacytidine treatment. Nature. 1977;267(5609):364.
115. Jones PA, Taylor SM. Cellular differentiation, cytidine analogs and DNA methylation. Cell. 1980;20(1):85–93.
116. Sun Y, Sun Y, Yue S, Wang Y, Lu F. Histone Deacetylase Inhibitors in Cancer Therapy. Curr Top Med Chem. 2018;18(28):2420–8.
117. Popova EY, Barnstable CJ. Insights Into the Epigenetics of Retinal Development and Diseases. In: Epigenetics and Regeneration. Elsevier; 2019. p. 355–83.
IssueVol 8, No 2 (2025); in press QRcode
SectionReview Article
DOI https://doi.org/10.18502/igj.v8i2.17999
Keywords
Epigenetics Cytokine Transcription Factor CD4 T cell T cell Differentiation

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Karimi Kakh M, Motallebnezhad M, Ghiasi P, Nazari F. Epigenetic Regulation of T helper Cells Differentiation. Immunol Genet J. 2025;8(2).