The Effect of Cold Plasma and Low-Level Laser Therapy on Oral Fibroblast Proliferation
Abstract
Background: Wound healing is a complex physiological process involving multiple phases and cellular mechanisms that restore damaged tissue. The oral cavity presents unique challenges for wound healing due to the presence of microorganisms and the impact of various diseases and treatments. Recent advancements, including low-level laser therapy (LLLT) and cold plasma, offer promising approaches to enhance wound healing by promoting cell proliferation and reducing inflammation. This study aimed to investigate the effects of cold plasma and low-level 980nm laser on the growth of oral fibroblasts and compare their respective impacts on wound healing.
Methods: Human gingival fibroblasts were divided into nine study groups, including a control group. Two groups were exposed to low-level 980nm diode laser irradiation for 15 and 30 seconds, while six groups received cold plasma irradiation with helium gas at flow rates of 1.85, 2.78 and 5.56 cm3/s for the same durations. Fibroblast proliferation was evaluated on days 1, 3, and 5 after treatment using the MTT assay.
Results: The results showed that on the 5th day after irradiation, 30 seconds of 980 nm laser irradiation significantly increased fibroblast proliferation compared to the other groups. In contrast, 15 seconds of plasma irradiation at a flow rate of 1.85 cm3/s had the least effect on promoting fibroblast proliferation. On the 1st day after radiation, plasma irradiation at flow rates of 2.78 and 5.56 cm3/s exhibited a greater impact on fibroblast proliferation compared to the other five test groups.
Conclusion: The 980nm diode laser demonstrated a greater capacity to enhance the proliferation of oral fibroblasts compared to cold plasma using helium gas.
2. Reinke J, Sorg H. Wound repair and regeneration. Eur. Surg. Res. 2012;49(1):35-43.
3. Velnar T, Bailey T, Smrkolj V. The wound healing process: an overview of the cellular and molecular mechanisms. J. Int. Med. Res. 2009;37(5):1528-42.
4. Haekkinen L, UITTO VJ, Larjava H. Cell biology of gingival wound healing. Periodontol. 2000. 2000;24(1):127-52.
5. desJardins-Park HE, Foster DS, Longaker MT. Fibroblasts and wound healing: an update. Regen. Med. 2018. p. 491-5.
6. Khan I, Arany P. Biophysical approaches for oral wound healing: emphasis on photobiomodulation. Adv. Wound Care. 2015;4(12):724-37.
7. Ozcelik O, Cenk Haytac M, Kunin A, Seydaoglu G. Improved wound healing by low‐level laser irradiation after gingivectomy operations: a controlled clinical pilot study. J. Clin. Periodontol. 2008;35(3):250-4.
8. Cho Y-D, Kim K-H, Lee Y-M, Ku Y, Seol Y-J. Periodontal wound healing and tissue regeneration: A narrative review. Pharmaceuticals. 2021;14(5):456.
9. Khan SA, Wingard JR. Infection and mucosal injury in cancer treatment. JNCI Monographs. 2001;2001(29):31-6.
10. Yang TS, Nguyen LT, Hsiao YC, Pan LC, Chang CJ. Biophotonic effects of low-level laser therapy at different wavelengths for potential wound healing. Photonics. 2022;9(8):591.
11. Basso FG, Pansani TN, Turrioni APS, Bagnato VS, Hebling J, de Souza Costa CA. In vitro wound healing improvement by low-level laser therapy application in cultured gingival fibroblasts. Int. J. Dent. 2012;2012.
12. Abesi F, Derikvand N. Efficacy of Low-Level Laser Therapy in Wound Healing and Pain Reduction After Gingivectomy: A Systematic Review and Meta-analysis. JLMS. 2023;14.
13. Zhao H, Hu J, Zhao L. The effect of low-level laser therapy as an adjunct to periodontal surgery in the management of postoperative pain and wound healing: a systematic review and meta-analysis. Lasers Med. Sci. 2021;36(1):175-87.
14. Kathuria V, Dhillon JK, Kalra G. Low level laser therapy: a panacea for oral maladies. Laser Ther. 2015;24(3):215-23.
15. Politis C, Schoenaers J, Jacobs R, Agbaje JO. Wound healing problems in the mouth. Front. Physiol. 2016;7:507.
16. Zaki Ewiss M, Mahmoud M, Steiner R. Effect of femtosecond laser interaction with human fibroblasts: a preliminary study. Lasers Med. Sci. 2023;38(1):83.
17. Dompe C, Moncrieff L, Matys J, Grzech-Leśniak K, Kocherova I, Bryja A, et al. Photobiomodulation—underlying mechanism and clinical applications. J. Clin. Med. 2020;9(6):1724.
18. Shingyochi Y, Kanazawa S, Tajima S, Tanaka R, Mizuno H, Tobita M. A low-level carbon dioxide laser promotes fibroblast proliferation and migration through activation of Akt, ERK, and JNK. PLoS One. 2017;12(1):e0168937.
19. Chung H, Dai T, Sharma SK, Huang Y-Y, Carroll JD, Hamblin MR. The nuts and bolts of low-level laser (light) therapy. Ann. Biomed. Eng. 2012;40:516-33.
20. Hamblin MR, Demidova TN. Mechanisms of low level light therapy. Mechanisms for low-light therapy. 2006;6140:614001.
21. Chen AC-H, Huang Y-Y, Arany PR, Hamblin MR, editors. Role of reactive oxygen species in low level light therapy. Mechanisms for Low-Light Therapy IV; 2009: SPIE.
22. Sterczała B, Grzech-Leśniak K, Michel O, Trzeciakowski W, Dominiak M, Jurczyszyn K. Assessment of human gingival fibroblast proliferation after laser stimulation in vitro using different laser types and wavelengths (1064, 980, 635, 450, and 405 nm)—preliminary report. J. Pers. Med.2021;11(2):98.
23. Fuchs C, Schenk MS, Pham L, Cui L, Anderson RR, Tam J. Photobiomodulation response from 660 nm is different and more durable than that from 980 nm. Lasers Surg. Med. 2021;53(9):1279-93.
24. Nowak-Terpiłowska A, Zeyland J, Hryhorowicz M, Śledziński P, Wyganowska M. Influence of Three Laser Wavelengths with Different Power Densities on the Mitochondrial Activity of Human Gingival Fibroblasts in Cell Culture. Life. 2023;13(5):1136.
25. Etemadi A, Sadatmansouri S, Sodeif F, Jalalishirazi F, Chiniforush N. Photobiomodulation effect of different diode wavelengths on the proliferation of human gingival fibroblast cells. Photochem. Photobiol. 2021.
26. Isman E, Aras MH, Cengiz B, Bayraktar R, Yolcu U, Topcuoglu T, et al. Effects of laser irradiation at different wavelengths (660, 810, 980, and 1064 nm) on transient receptor potential melastatin channels in an animal model of wound healing. Lasers Med. Sci. 2015;30(5):1489-95.
27. Usumez A, Cengiz B, Oztuzcu S, Demir T, Aras MH, Gutknecht N. Effects of laser irradiation at different wavelengths (660, 810, 980, and 1,064 nm) on mucositis in an animal model of wound healing. Lasers Med. Sci. 2014;29(6):1807-13.
28. Crisan B, Soritau O, Baciut M, Campian R, Crisan L, Baciut G. Influence of three laser wavelengths on human fibroblasts cell culture. Lasers Med. Sci. 2013;28:457-63.
29. Skopin MD, Molitor SC. Effects of near‐infrared laser exposure in a cellular model of wound healing. Photodermatol. Photoimmunol. Photomed. 2009;25(2):75-80.
30. Lee J-H, Choi E-H, Kim K-M, Kim K-N. Effect of non-thermal air atmospheric pressure plasma jet treatment on gingival wound healing. J. Phys. D Appl. Phys. 2016;49(7):075402.
31. Zhang JP, Guo L, Chen QL, Zhang KY, Wang T, An GZ, et al. Effects and mechanisms of cold atmospheric plasma on skin wound healing of rats. Contrib. Plasm. Phys. 2019;59(1):92-101.
32. Tanaka H, Hori M. Medical applications of non-thermal atmospheric pressure plasma. J. Clin. Biochem. Nutr. 2017:16-67.
33. Morfill G, Kong MG, Zimmermann J. Focus on plasma medicine. NJP. 2009;11(11):115011.
34. Chokradjaroen C, Wang X, Niu J, Fan T, Saito N. Fundamentals of solution plasma for advanced materials synthesis. Mater. Today Adv. 2022;14:100244.
35. Isbary G, Shimizu T, Li Y-F, Stolz W, Thomas HM, Morfill GE, et al. Cold atmospheric plasma devices for medical issues. Expert Rev. Med. Devices. 2013;10(3):367-77.
36. Kang SU, Choi JW, Chang JW, Kim KI, Kim YS, Park JK, et al. N2 non‐thermal atmospheric pressure plasma promotes wound healing in vitro and in vivo: Potential modulation of adhesion molecules and matrix metalloproteinase‐9. Exp. Dermatol. 2017;26(2):163-70.
37. Guembel D, Suchy B, Wien L, Gelbrich N, Napp M, Kramer A, et al. Comparison of cold atmospheric plasma Devices' efficacy on osteosarcoma and fibroblastic in vitro cell models. Anticancer Res. 2017;37(10):5407-14.
38. Kleineidam B, Nokhbehsaim M, Deschner J, Wahl G. Effect of cold plasma on periodontal wound healing—an in vitro study. Clin. Oral Investig. 2019;23(4):1941-50.
39. Küçük D, Savran L, Ercan UK, Yarali ZB, Karaman O, Kantarci A, et al. Evaluation of efficacy of non-thermal atmospheric pressure plasma in treatment of periodontitis: A randomized controlled clinical trial. Clin. Oral Investig. 2020;24:3133-45.
40. Bationo R, Rouamba A, Diarra A, Beugré-Kouassi ML, Jordana F, Beugré J. Culture of Human Gingival Fibroblasts: An Experimental Model. Cell Biol. 2020;8(1):8-11.
41. Dhilip Kumar SS, Houreld NN, Abrahamse H. Selective laser efficiency of green-synthesized silver nanoparticles by aloe arborescens and its wound healing activities in normal wounded and diabetic wounded fibroblast cells: In vitro studies. Int J Nanomedicine. 2020:6855-70.
42. Topaloglu N, Özdemir M, Çevik ZBY. Comparative analysis of the light parameters of red and near‐infrared diode lasers to induce photobiomodulation on fibroblasts and keratinocytes: An in vitro study. Photodermatol. Photoimmunol. Photomed. 2021;37(3):253-62.
43. Giannakopoulos E, Katopodi A, Rallis M, Politopoulos K, Alexandratou E. The effects of low power laser light at 661 nm on wound healing in a scratch assay fibroblast model. Lasers Med. Sci. 2022;38(1):27.
44. Misra P, Kalsi R, Arora SA, Singh KS, Athar S, Saini A, et al. Effect of Low-Level Laser Therapy on Early Wound Healing and Levels of Inflammatory Mediators in Gingival Crevicular Fluid Following Open Flap Debridement. Cureus. 2023;15(2).
45. Mirzaei A, Ladiz MR, Javani-Jouni F, Hendi S, Najafi-Vosough R, HashemZehi H, et al. Effects of 980nm diode laser irradiation on gingival fibroblasts and periodontal ligament stem cells. Acta Sci Micro. 2020;3:50-4.
46. Huang Y-Y, Chen AC-H, Carroll JD, Hamblin MR. Biphasic dose response in low level light therapy. Dose-response. 2009;7(4):dose-response. 09-027. Hamblin.
47. Li J, Feng Z, Yu X, Wu D, Wu T, Qian J. Aggregation-induced emission fluorophores towards the second near-infrared optical windows with suppressed imaging background. Coord. Chem. Rev. 2022;472:214792.
48. Plavskii V, Ananich T, Dudinova O, Kruchenok J, Leusenko I, Mikulich A, et al., editors. Photoacceptors and photochemical processes determining the regulatory effect of visible laser radiation on various cell types. ALT.2022.
49. Rola P, Włodarczak S, Lesiak M, Doroszko A, Włodarczak A, editors. Changes in cell biology under the influence of low-level laser therapy. Photonics; 2022: MDPI.
50. Ren C, McGrath C, Jin L, Zhang C, Yang Y. Effect of diode low-level lasers on fibroblasts derived from human periodontal tissue: a systematic review of in vitro studies. Lasers Med. Sci. 2016;31:1493-510.
51. Amaroli A, Pasquale C, Zekiy A, Utyuzh A, Benedicenti S, Signore A, et al. Photobiomodulation and oxidative stress: 980 nm diode laser light regulates mitochondrial activity and reactive oxygen species production. Oxid. Med. Cell. Longev. 2021;2021:1-11.
52. Ma H, Yang J-P, Tan RK, Lee H-W, Han S-K. Effect of low-level laser therapy on proliferation and collagen synthesis of human fibroblasts in Vitro. JWMR. 2018;14(1):1-6.
53. Bourdens M, Jeanson Y, Taurand M, Juin N, Carrière A, Clément F, et al. Short exposure to cold atmospheric plasma induces senescence in human skin fibroblasts and adipose mesenchymal stromal cells. Sci. Rep. 2019;9(1):1-15.
54. Hensel K, Kučerová K, Tarabová B, Janda M, Machala Z, Sano K, et al. Effects of air transient spark discharge and helium plasma jet on water, bacteria, cells, and biomolecules. Biointerphases. 2015;10(2):029515.
55. Schmidt A, Liebelt G, Nießner F, von Woedtke T, Bekeschus S. Gas plasma-spurred wound healing is accompanied by regulation of focal adhesion, matrix remodeling, and tissue oxygenation. Redox biology. 2021;38:101809.
56. Lopes BB, Kraft MBdPL, Rehder J, Batista FRX, Puzzi MB. The interactions between non-thermal atmospheric pressure plasma and ex-vivo dermal fibroblasts. Procedia Eng. 2013;59:92-100.
57. Kim S, Kim Y, Hyun Y-S, Choi H, Kim S-Y, Kim T-G. Exosomes from human cord blood plasma accelerate cutaneous wound healing by promoting fibroblast function, angiogenesis, and M2 macrophage differentiation. Biomater. Sci. 2021;9(8):3028-39.
58. Braný D, Dvorská D, Halašová E, Škovierová H. Cold atmospheric plasma: A powerful tool for modern medicine. Int. J. Mol. Sci. 2020;21(8):2932.
59. Busco G, Robert E, Chettouh-Hammas N, Pouvesle J-M, Grillon C. The emerging potential of cold atmospheric plasma in skin biology. Free Radic. Biol. Med. 2020;161:290-304.
60. Okuno M, Aoki S, Kawai S, Imataki R, Abe Y, Harada K, et al. Effect of Non-Thermal Atmospheric Pressure Plasma on Differentiation Potential of Human Deciduous Dental Pulp Fibroblast-like Cells. Appl. Sci. 2021;11(21):10119.
61. Jung JM, Yoon HK, Jung CJ, Jo SY, Hwang SG, Lee HJ, et al. Cold plasma treatment promotes full-thickness healing of skin wounds in murine models. Int. J. Low. Extrem. Wounds. 2023;22(1):77-84.
62. Brun P, Pathak S, Castagliuolo I, Palù G, Brun P, Zuin M, et al. Helium generated cold plasma finely regulates activation of human fibroblast-like primary cells. PLoS One. 2014;9(8):e104397.
63. Kwon J-S, Kim YH, Choi EH, Kim C-K, Kim K-N, Kim K-M. Non-thermal atmospheric pressure plasma increased mRNA expression of growth factors in human gingival fibroblasts. Clin. Oral Investig. 2016;20(7):1801-8.
Files | ||
Issue | Vol 6, No 2 (2023) | |
Section | Original Article | |
DOI | https://doi.org/10.18502/igj.v6i2.16411 | |
Keywords | ||
Diode Laser Fibroblasts Low-level Laser Therapy Non-Thermal Atmospheric Pressure Plasma Wound Healing |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |