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Abstract
Neuroinflammation is a critical process in Alzheimer’s disease (AD) development in which different types 
of cells and cytokines are involved. Proinflammatory cytokine production and the disturbance of anti-in-
flammatory pathways play critical roles in AD. Neuroinflammation is affected by various factors such as 
metabolism (metabolic diseases such as obesity), genetics, and immune cells, especially resident immune 
cells in the brain. Moreover, the main pro-inflammatory cytokines and inflammatory pathways have differ-
ent effects on neuroinflammation, neuronal biogenesis, and neuronal apoptosis in AD. Exploration of the re-
lationship between neuroinflammation, risk factors of neuroinflammation, and pro-inflammatory cytokines 
in AD helps us to understand AD pathogenesis and select therapeutic targets more efficiently. 
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Introduction
One of the world's most prevalent diseases and 

the most common cause of dementia is Alzheimer's 
disease (AD), which is responsible for 60-70% of 
dementia cases. It is estimated that the number of 
patients with AD will exceed 7 million in 2030 (1, 

2). AD is characterized by a progressive decline 
in cognitive functions, usually initiated by de-
creased memory functions, and gradually leads 
to a total inability to do essential daily life tasks 
and, eventually, death (3). Based on recent epide-
miological studies, the prevalence of AD would 
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double every 20 years, at least until 2040, due to 
the rapid aging of the nations (3). The etiology of 
this disease is complicated, and several factors, 
such as environmental and genetic factors, have 
been assumed to contribute to the multifactorial 
etiology of this disease. For instance, infections, 
diet, and metals (such as aluminum) are effective 
environmental factors (4). Regarding genetics, dif-
ferent genes have been attributed to the initiation 
and progression of AD, such as three well-stud-
ied genes: the amyloid precursor protein (APP), 
presenilin 1 (PSEN1), and presenilin 2 (PSEN2) 
genes (5-7). Studies show that one of the critical 
mechanisms in developing AD is inflammation, 
which is defined as the immune system's response 
to pathogens or organ damage (8). Inflammation 
occurs in almost all parts of the body, including 
the central nervous system (CNS), which leads to 
the activation of  astrocytes and microglia, the ac-
cumulation of various chemokines and cytokines, 
and neurodegenerative processes (9). Microglia 
are the resident macrophages in the CNS, while 
astrocytes are the most frequent subtype of gli-
al cells, which both are responsible for neuroin-
flammation by secreting different cytokines and 
chemokines (10). The most common hallmark of 
AD is the accumulation of beta-amyloid peptide 
(Aβ). Indeed, it could be the first trigger in the 
pathogenesis of this disease. Furthermore, tubu-
lin-associated unit (tau) protein aggregation, the 
formation of different cellular and intercellular 
neuritic plaques, neurofibrillary tangles(NFTs), 
and neuropil threads are other hallmarks of AD 
(11). 

Taken together, all these aggregations stim-
ulate the activation of astrocytes and microglia, 
leading to the secretion of pro-inflammatory 
cytokines and chemokines from microglia and 
pro- and anti-inflammatory cytokines from as-
trocytes, which potentially cause synaptic dam-
age, neuronal death, and finally AD development 
(12). Cytokines and chemokines, as important 
subcategories of immune mediators, are involved 
in the induction of inflammation; therefore, they 
play a prominent role in the development of AD 
through synaptic dysfunction, neuronal death, 
and inhibition of neurogenesis (13). However, the 
importance of microglia in brain functions such 
as neural plasticity, long-term potentiation (LTP), 
and brain homeostasis by producing pro-inflam-

matory cytokines at lower concentrations cannot 
be denied (14, 15). Inflammation is an important 
factor in various metabolic disorders, such as di-
abetes, and also in neurodegenerative diseases, 
such as AD (16). On the other hand, Metabolic 
disorders such as diabetes mellitus have a signifi-
cant role in AD development and progression by 
induction of pathological changes in the body, 
including vascular changes, inflammation, and 
blood glucose increase (17, 18). Gut microbiota 
can also induce neuroinflammation and disturb 
metabolic homeostasis by either disrupting the 
blood-brain barrier (BBB) and delivering toxins 
in the brain or via various pro-inflammatory me-
diators (19). Considering the high prevalence and 
the potential heavy burden of AD, understanding 
the pathophysiology of this disease is of high val-
ue. In this review, the effects of inflammation and 
key factors involved in inducing neuroinflamma-
tion and neurodegeneration in the pathogenesis 
of AD and the possible target therapies are dis-
cussed.

Common Hallmarks of AD
Aβ 

Beta-amyloid peptide (Aβ) is one of the most 
important hallmarks of AD, which plays a critical 
role in the pathogenesis and neuronal and syn-
aptic dysfunction during the progression of AD 
(20). The amyloid precursor protein (APP) gene is 
located on chromosome 21, and its product, APP, 
is a precursor of the Aβ protein (21). Recent stud-
ies showed that APP has several essential roles 
for the brain's normal function, such as metal 
binding and protease inhibition, while it is also 
a component of the extracellular matrix (21, 22). 
APP can be cleaved by specific enzymes (secre-
tases) and result in different substrates. Normally, 
it is cleaved by α-secretase, resulting in the forma-
tion of soluble APP (sAPPα) and transmembrane 
C-terminal fragment (α-CTF). Then, γ-secretase 
cleaves α-CTF to generate a 23-25 amino acid 
peptide called P3 and APP intracellular domain 
(AICD). This pathway is non-amyloidogenic and 
cannot lead to AD development. However, im-
proper cleavage of APP resulted from β and γ 
secretase activity. In the first step of an amyloi-
dogenic pathway, β-secretase cleaves APP to pro-
duce β-CTF and soluble APP-β. Then, γ-secretase 
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cleaves β-CTF and forms Aβ, composed of 38 to 
43 amino acids with different solubility, stabil-
ity, biological, and toxic properties (21, 23, 24). 
Accumulation of Aβ (Aβ1–42) leads to mast cell 
activation, which increases blood-brain barrier 
(BBB) permeability, and the release of inflamma-
tory mediators such as cytokines, chemokines, 
and other neuroactive mediators, which cause 
glial cells and neuron activation (25-27).  Howev-
er, Aβ-activated astrocytes and microglia increase 
uptake of Aβ via microglia and protect neurons 
from Aβ toxicity by the secretion of transforming 
growth factor-β (TGF-β), which is a neurotrophic 
and anti-inflammatory cytokine (28)(Both path-
ways of APP proteolytic processing are presented 
in Figure 1). With regard to the pivotal role of 
Aβ in AD development, numerous therapies have 
been developed based on the inhibition of Aβ for-
mation, aggregation, or degradation (29).

Tau Protein
The other major hallmark of AD is tau protein 

aggregations that form neuritic plaques (NP), 
neurofibrillary tangles, and neuropil threads. 
Tau is a soluble, microtubule-associated protein 
(MAPT),  playing an essential role in supporting 
the neuronal cell’s microarchitecture complex 
(30). Moreover, the tau protein is involved in syn-
aptic modulation and neuronal growth (31). Sev-
eral mechanisms lead to tau protein disturbanc-
es, such as the phosphorylation of tau by kinases 
and the formation of p-tau, which is insoluble in 
water. The aberrant hyperphosphorylation of tau 
leads to tau’s dissociation from microtubules and 
the promotion of tau aggregation. Meanwhile, the 
aggregation of p-tau leads to neurofibrillary tan-
gles and thread formation (32). In addition, in-
flammation is an important mechanism as well, 
since the increase in interleukin 1β (IL-1β), a 
pro-inflammatory cytokine, leads to the hyper-
phosphorylation of tau by kinases (33). Diabetes 
mellitus and genetic factors are also involved in 
tau protein alterations, with complex underlying 
mechanisms (34-36). The utilization of tau pro-
tein as a therapeutic target remains controversial, 
and several clinical trials are in process (36-38).

Role of Inflammation in AD 
Since the 1980s, when Griffin et al. reported the 

increase in Interleukin-1 (IL-1) in AD patients, 

several studies have focused on the central role 
of inflammation in the development of AD (39, 
40). Inflammation is a complex process that con-
sists of several different pathways. Cytokines are 
important signaling molecules needed for prop-
er homeostasis, which have inflammatory and/
or anti-inflammatory functions depending on the 
target receptor, cell, and the phase of an immune 
response (41, 42). Neuroinflammation refers to 
the inflammation of the neurons, developed by 
various factors interfering with CNS homeostasis, 
consisting of external factors including infection, 
trauma, ischemia, and aging (43), while internal 
factors are composed of cytokines, chemokines, 
reactive oxygen species (ROS), microglia, epithe-
lial cells (44).  Epithelial cells in CNS can produce 
various substances such as IL-1b and TNF-α, 
as pro-inflammatory cytokines (45). Microglia, 
as another part of neuroinflammation, induce 
apoptosis in neurons and phagocytosis through 
pro-inflammatory cytokine secretion (46-49). 
Moreover, the role of T-cells and B-cells as parts 
of adaptive immunity in neuroinflammation is 
inevitable. T-cells can target neurons and induce 
apoptosis in them. Also, T-cells can interact with 
activated microglia, resulting in the inflammation 
of the CNS and demyelination (50). 

T helper (Th)17 cells, as one of the subcatego-
ries of T-cells with inflammatory features, pro-
duce a wide spectrum of pro-inflammatory cy-
tokines such as IL-6, Interleukin-17A (IL-17A), 
Interleukin-17F (IL-17F), interferon-γ (IFN-γ), 
and TNF-α, which exacerbate neuroinflamma-
tion (51, 52). It should be noted that inflamma-
tion is a critical response to trauma, infection, 
and the normal function of the CNS, leading to 
the induction of neurogenesis in different parts 
of the brain, such as the hippocampus, via acti-
vation of T lymphocytes (53). Additionally, stud-
ies showed that interleukin-4 (IL-4)-producing T 
cells are needed for cognitive performance (54). 
Neuroinflammation is required for the regulation 
of neurons and neurogenesis after an insult. Fur-
thermore, the facilitation of axonal regeneration 
through M2-macrophages and Th1, but not Th2 
or Th17 cells, provision of neurotrophic factors, 
and its critical role in remyelination of the neu-
rons make this phenomenon an important part 
of the normal recovery of the CNS after an inju-
ry (55-59).  However, inflammation plays a dou-
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ble-edged sword in the prolonged form known as 
chronic neuroinflammation, which exacerbates 
neuronal damage and neurodegeneration. Neu-
rodegeneration is a critical and central process 
for cognitive dysfunctions and the development 
of neurodegenerative diseases like AD  (60, 61).

Cellular and Molecular Pathways Involved 
in Alzheimer’s Neuroinflammation 
Microglia

Microglia are the resident macrophages of the 
CNS, which contribute to the homeostasis main-
tenance of the CNS. Microglia are classified into 
M1 (pro-inflammatory state) and M2 (repairing 
and protective state). However, it should be noted 
that several different subtypes of microglia have 
been identified in the brain, including KSPG-mi-
croglia, satellite microglia, Hox8b-microglia, and 
Disease-associated microglia (DAM)(62). Neu-
rodegeneration-associated molecular patterns 
(NAMPs) are danger molecules present on my-
elin debris, apoptotic bodies of dying neural cells, 
and the accumulation of abnormal proteins such 
as Aβ, and are the triggers of the transition of 
resident microglia to DAM via TREM2, a main 
receptor of DAM (63). In the early stages of AD, 
activation of DAM could reduce the velocity of 
disease progression, but inappropriate activation 
of DAM leads to neuroinflammation and deteri-
oration of AD (64). In a normal brain, microg-
lia are in the M2 state. Studies showed that in the 
context of AD, microglia cells showed phenotypic 
alteration from M2 to M1 state (65, 66). M1 mi-
croglia have a prominent role in inflammation by 
secretion of various cytokines, especially pro-in-
flammatory cytokines such as IL-1B, IL-6, IL-18, 
IL-12, IL23, TNF-α, and neurotoxic substances, 
which are responsible for blocking neuronal dif-
ferentiation, attenuating microglial phagocytosis, 
extracellular matrix damage through the activa-
tion of nuclear factor-kB and accumulation of Aβ 
and as well as calling other inflammatory cells to 
the inflammation site through cytokines (67-71). 
When the amyloid accumulation becomes overt, 
their phagocytic function is disturbed. Addition-
ally, studies showed that Aβ can activate the mo-
lecular pathways of pro-inflammatory cytokine 
secretion in microglia, such as NF-κB and NLR 
family pyrin domain containing 3 (NLRP3) in-

flammasome secretion, mediated by cell surface 
receptors such as CD36, CD47, and a-6/b-1 in-
tegrin, leading to neuroinflammation and neuro-
degeneration (72-76). NF-κB is a protein family 
that controls DNA transcription and expression. 
It is important in inflammation as it increases the 
pro-inflammatory cytokine expression pathway. 
Additionally, NF-κB stimulates the β-secretase 
(BACE1) cleavage of APP and Aβ production by 
enhancing BACE1 expression (77, 78). NLRP3 is 
a part of the innate immune system and is found 
in macrophages and inflammasomes. These pro-
teins can trigger immune responses (79, 80). 
Moreover, this inflammasome is an intracellular 
protein complex that regulates the maturation of 
IL-1β and IL-18 and also increases the cleavage 
and activity of caspase-1, which are significantly 
increased in AD brains and associated with the 
onset and progression of the disease (81, 82).

Astrocyte
Astrocytes are a group of glial cells that reside 

in the CNS. They have essential roles in the CNS, 
including repairing the CNS, protecting neurons 
from harmful agents and neurotoxic substances, 
modulating synapses (83). These cells are also 
important in neurodegenerative diseases like 
Parkinson’s disease (PD) and AD (84, 85). Secre-
tion of cytokines such as IL-1a and TNF-α from 
microglia, resulting in astrocyte activation and 
the formation of reactive astrocytes (86). There 
are two forms of reactive astrocytes: A1 and A2. 
Neuroinflammation gives rise to the A1 form. 
A proposed mechanism for this phenomenon is 
through Aβ and NF-κB. Aβ can activate the NF-
κB pathway in astrocytes and induce A1. A1 is a 
neurotoxic astrocyte and upregulates the expres-
sion of the complement cascade gene, which leads 
to the release of the complement protein C3. This 
protein binds to the C3aR in microglia and neu-
rons. Activation of the complement-3a receptor 
(C3aR) in microglia increases phagocytosis, and 
in neurons, it disrupts dendritic morphology and 
network function, both of which contribute to AD 
pathogenesis (28, 87, 88). A2 is a protective form 
of reactive astrocytes and is induced by ischemia. 
This form upregulates the expression of neuro-
trophic genes and promotes survival, growth, and 
repair of synapses (28). Astrocytes also contrib-
ute to glucose hypometabolism through the glu-
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tamatergic excitotoxicity mechanism. Increasing 
glutamate production and decreasing the glu-
tamate receptors of astrocytes, including GLT-1 
and GLAST, causes an increase in the amounts 
of glutamate in the CNS. GLT-1 and GLAST are 
responsible for glutamate reuptake from CSF, and 
some studies have suggested that Aβ can sup-
press these receptors. Glucose hypometabolism 
increases stress oxidative production, which can 
cause neuroinflammation either directly or by 
producing pro-inflammatory cytokines (89-91).

Cytokines and Signaling Pathways
IL-1

IL-1 (also called "endogenous pyrogen") 
was the first cytokine that proved to affect the 
CNS(92). Both isoforms of IL-1 (IL-1α and IL-
1β) are pro-inflammatory cytokines, have similar 
effects, and are produced in a variety of cells, like 
microglia and lymphocytes, as precursor proteins 
called pro-IL-1α and pro-IL-1β. Pro-IL-1α is an 
active form of IL-1α that can be cleaved to form 
IL-1α, a smaller active molecule, by a specific en-
zyme called CAPLAIN. IL-1α acts intracellularly, 
but it can also be released after neurodegenera-
tion. Pro-IL-1β is a precursor of IL-1β, but un-
like pro-IL-1α, it is an inactive form of IL-1β and 
should be broken down by the CASPASE-1 en-
zyme to form an active form, IL-1β (93, 94). IL-1α 
and IL-1β apply their intracellular signaling via 
membrane-bound type I IL-1 receptor (IL-1R1)
(95). This complex is reinforced by IL-1-receptor 
accessory protein (IL-1RAcP), as this receptor is 
needed for the normal function of IL-1R1. Kor-
her et al. showed that the response to IL-1 via IL-
1RI internalization or IL-2 production in the ab-
sence of IL-1RAcP could not occur (96). Another 
receptor of IL-1 is IL-1R2, considered a decoy 
receptor, and no intracellular signaling pathway 
was identified for this receptor; however, recent 
studies suggested that it is mainly expressed on 
microglia and can diminish the cytokine-induced 
microglial activation (95, 97, 98). IL-1 receptors 
can also be shed from the neurons (99). An an-
tagonist ligand of IL-1R is IL-1RA. Its secreted 
isoform (also called sIL-1RA) is produced by the 
IL-1-producing cells (100, 101). IL-1RA and IL-
1R have polymorphic genes and are located on 
chromosome 2 (102, 103). These polymorphisms 

could explain the pathogenesis of some early-on-
set forms of AD (102, 104, 105). IL-1 is needed 
for normal brain functions. Mason et al. showed 
that the deficiency of IL-1β in mice leads to a de-
lay in CNS repair and myelination. IL-1 is also re-
quired for normal sleep behavior and non-rapid 
eye movement (106). Another role of IL-1 is its 
stimulating effect on magnocellular neurons in 
the paraventricular nucleus and supraoptic nucle-
us of the Hypothalamus needed for vasopressin 
and oxytocin secretion (107). It also stimulates 
the corticotropin-releasing factor (CRF), which 
is secreted by neurons in the hypothalamus. In 
fact, this feature of IL-1 can affect Adrenocorti-
cotropic hormone (ACTH) and cortisol secretion 
(108, 109). 

IL-1 is involved in AD through several mech-
anisms: 1) It upregulates APP production. D. 
Goldgaber et al. showed that APP upregulation 
could occur through protein kinase C (PKC). 
The upstream binding site for APP promoter 
production is activator protein-1 (AP-1), which 
can be utilized by PKC to increase APP tran-
scription(110).  2) The sustained release of IL-1 
stimulates tau hyperphosphorylation in the neu-
rons. Y.Li et al. showed the IL-1 effects on tau hy-
perphosphorylation, at least partly, via the p38- 
p38-Mitogen-activated protein kinase(MAPK) 
pathway, leading to neuronal structural changes, 
synaptic loss, and exacerbation of  AD (33). 3)
The overexpression and constant release of IL-1 
and its engagement with IL-1R1 causes neuroin-
flammation mediated by nuclear factor kappa B 
(NF-κb). This pathway leads to an increase in the 
transcription of pro-inflammatory cytokines, in-
cluding IL-6 and IL-1. 4) IL-1 can directly attach 
to the microglia cells, leading to the secretion of 
several neurotoxic substances, including pro-in-
flammatory cytokines (like TNF-α), chemokines 
(such as CC-chemokine ligand2 (CCL2)), eico-
sanoids (like PGE2), and reactive oxygen species 
(ROS)(111, 112). Shang et al. showed that IL-1β 
drives the cellular senescence of rat astrocytes 
when induced by oxidative stress and oligomeri-
zed Aβ peptide (113). 5) IL-1 changes the pattern 
of gene expression of astrocytes, resulting in as-
trocyte proliferation (known as astrogliosis), IL-6 
secretion, an increase in the release of metallo-
proteinases(MMPs)(114). 6) IL-1 causes expres-
sion of E-selectin, intercellular adhesion mole-
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cule 1 (ICAM-1), vascular cell adhesion protein 
1 (VCAM-1), and CXC-chemokine family, such 
as chemokine ligand 1 (CXCL1) which increase 
leukocyte adhesion and invasion to the brain 
parenchyma (114-116). 7) IL-1 has positive ef-
fects on neuron function by inhibiting these cells 
through γ-aminobutyric acid (GABA), inhibiting 
glutamate release, and calcium entry. However, 
if this inhibition occurs in the inhibitory path-
way, it could reinforce excitatory neurons and 
cause neuronal death (117). Additionally, IL-1 
can cause neuronal death by increasing calcium 
entry through N-methyl-D-aspartate (NMDA) 
receptors. Calcium overload in the neurons caus-
es mitochondrial dysfunction, which triggers the 
apoptotic pathways. Calcium accumulation in the 
mitochondria causes the opening of the perme-
ability transition pore (PTP). Opening of PTP 
allows pro-apoptotic factors such as cytochrome 
C (CytC) and apoptosis-inducing factor (AIF) to 
be released in the cytoplasm and activate caspases 
(118).  Besides, high calcium influx to the endo-
plasmic reticulum (ER) causes the C/EBP Homol-
ogous Protein (CHOP) overexpression, which 
induces endoplasmic reticulum stress-mediated 
apoptosis (119-123)(Figure 2a).

IL-6
Another critical cytokine in AD development 

is IL-6. Its family has several cytokines, includ-
ing IL-6, IL-11, LIF (leukemia inhibitory factor), 
OSM (oncostatin M), CNTF (ciliary neurotroph-
ic factor), CT-1 (corticotrophin-1), and CLC (car-
diotrophin-like cytokine)(124-126). IL-6 is a gly-
cosylated protein composed of 4 α helixes, and its 
molecular weight is 21–28 kDa (127, 128). Its re-
ceptors are IL-6R and gp130. Gp130 is expressed 
in almost every cell in the body, and it is a crucial 
part of IL-6 signaling, but IL-6R is expressed in 
specific cells such as leukocytes, hepatocytes, T 
cells, etc. This selective expression helps IL-6 to 
act selectively in the body (129-131). IL-6 induc-
es the proliferation and differentiation of B and T 
cells, increases the liver synthesis of acute-phase 
protein, regulates APP, increases serum amyloid 
A (SAA), a major acute-phase protein, induces 
megakaryocyte maturation and platelet release, 
increases collagen synthesis and collagen via an 
effect on fibroblast (132-137). These effects are ap-
plied through gp130 and its intracellular proteins: 

Janus kinase 1 (JAK1) and STAT3, two principal 
intracellular signaling pathways involved in IL-6 
signaling (138). The activation of JAK via IL-6 ac-
tivates the PI3/Akt pathway, which leads to NF-
kb activation. NF-kb binds to the APP promoter 
and increases Aβ production (139). Additionally, 
Aβ can stimulate the release of IL-6 and exacer-
bate neuroinflammation (140), which activates 
microglia and astrocytes to produce pro-inflam-
matory cytokines like TNF-α (141). IL-6 can acti-
vate STAT proteins, especially signal transducers 
and activators of transcription 3 (STAT3), which 
is important for astrogliosis and astrocyte reac-
tivity. These mechanisms are important in neu-
roinflammation and neurodegeneration in AD 
(142, 143). On the other hand, IL-6 is required 
for normal brain function. Gadient et al. showed 
that IL-6 and its receptor (IL-6R) increase during 
postnatal development, and they act as neuro-
trophic factors (144). IL-6 is involved in cogni-
tive function, as D. Braida et al. showed that in 
IL-6-deficient mice, the cognitive function be-
comes disrupted (145). Although S. Toulmond et 
al. showed the preventive effect on the neurotox-
icity of IL-6 after NMDA injection to the striatum 
(146). IL-6 also has a role in AD development, 
and its levels increase in the blood of AD patients. 
However, some studies have reported a decrease 
or normal level of IL-6 (147). M. Huberman et 
al. showed the correlation between IL-6 and AD 
severity. They observed a significant increase in 
IL-6 in both mild and moderately severe AD pa-
tients compared to the control group, but it did 
not significantly differ between mild and moder-
ate patients (148). 

As mentioned above, IL-6 is a strong stimula-
tor for acute-phase protein release from the liver, 
like SAA, and it can be responsible for the high 
levels of acute-phase protein and hyperinflam-
mation state in AD patients (149). SAA can in-
teract with amyloid-beta and accumulate in the 
plaques, and facilitate memory decline (150, 151).
IL-6 can increase tau hyperphosphorylation via 
dysregulation of the cyclin-dependent kinase 5 
(cdk5)/p35 pathway and inactivation of phospha-
tases like protein phosphatase 1 (PP1)(152, 153). 
An increase in IL-6 induces Th-17 differentiation 
from naïve T cells. Th-17 cells exacerbate AD via 
two mechanisms: first, these cells activate astro-
cytes by IL-17 secretion and cause neurodegen-
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eration. Second, it can cause neurodemyelination 
and neurodegeneration by secreting inflammato-
ry cytokines, especially IL-23 (154-156). Despite 
the clear role of IL-6 in AD development, some 
studies reported its beneficial effect on the early 
phase of AD by facilitating plaque clearance (157)
(Figure 2b).

TNF-α
TNF-α is a TNF superfamily member and a 

powerful cytokine with cytotoxic properties that 
causes tumor necrosis. Its gene has been located 
on chromosome 6, and studies have shown that 
some polymorphisms of this gene can increase 
the AD risk (158, 159). All of the TNF members 
have a TNF homology domain (THD) and a tri-
mer structure. TNF-α has two forms: soluble (sT-
NF-α) and membrane-bound (tmTNF-α) with 17 
kDa and 26 kDa molecular weight, respectively 
(160, 161). The cleavage of tmTNF-α leads to sT-
NF-α formation. Both of them are active biologi-
cally and have different roles. sTNF-α has a high 
affinity for binding to TNFR1, a receptor that is 
important in apoptosis. Thus, inhibition of this 
form of TNF-α in the brain can inhibit neuronal 
apoptosis and reverse AD progression (162). tmT-
NF-α has a high affinity for TNFR2; this recep-
tor is important for regulating genes involved in 
cell survival, myelination, and immunity against 
pathogens (163). TNF-α receptors (TNFR) are 
from the TNF receptor superfamily (TNFRSF) 
with a cysteine-rich domain (CRD), and the THD 
binds to this domain. Three types of TNFR have 
been discovered in recent years: 1) the recep-
tors with the death domain (known as TNFR1), 
involved in TNF intracellular signaling and in-
duction of apoptosis in the cell by using Fas-as-
sociated protein with death domain (FADD)
(164). TNFR1 has mediated the major impact of 
TNF-α due to its expression at low levels on all 
nucleated cells of the body (165). 2) The receptors 
without the death domain (known as TNFR2) 
are expressed primarily on cells of hematopoietic 
origin, but neurons can also express them (166).  
3- The decoy receptor binds to TNF-α with high 
affinity and specificity but cannot induce intracel-
lular signaling (167). 

TNF-α has numerous biological effects, includ-
ing an increase in resistance to microbial infection 
(168), and cancer (169). Moreover, Shoham et al. 

showed the activity of TNF-α in normal sleep, as 
the reduced level of TNF-α correlates with a re-
duction in continuous sleep; the same effect has 
been seen in the knockout of the TNFR1 gene in 
animal models by an increase in Aβ production. 
TNF-α and IFN-γ can increase the expression of 
β-secretase, which can lead to Aβ production and 
decrease its reuptake (170). Furthermore, TNF-α 
and IFN-γ synergistically can decrease soluble 
APP, which is a protective form of this protein 
compared to the insoluble form of APP, causing 
Aβ production (171). L. Osborn et al. showed 
the potency of TNF-α in NF-kB activation. This 
scenario can also occur in microglia and increase 
the release of TNF-α and other cytokines, and ex-
acerbate the inflammation (172). TNF-α can also 
decrease Aβ clearance via an effect on microglia 
and cause synaptic dysfunction (173). N.Hov-
elmeyer et al. showed the involvement of TNF-α 
in the induction of apoptosis in oligodendrocytes. 
Numerous studies have shown the vulnerability 
of oligodendrocytes and the reduction of myelin 
in AD. This role of TNF-α can explain this vul-
nerability, even as a part of the mechanisms in-
volved in the myelin breakdown in AD (174). The 
upregulation of VCAM-1 on endothelium and as-
trocytes causes the crossing of lymphocytes and 
other immune cells through the BBB, and further 
inflammation (175). TNF-α can increase the ex-
pression of inducible nitric oxide (iNOS). The 
result of iNOS activity is NO, which is a neuro-
toxic substance and increases neuronal loss (176). 
TNF-α can increase the production of S100B as a 
zinc binder. Zinc is an important ion in normal 
synaptic function, and TNF-α can decrease it and 
induce synaptic dysfunction (177). TNF-α can 
decrease neurogenesis via NF-κB activation and 
caspase 3 and 9, two potent apoptotic factors, and 
related pathways  (178, 179). One of the import-
ant aspects of AD is mitochondrial dysfunction. 
Excessive expression of TNF-α can disturb the 
mitochondrial function of the neurons directly. 
This disturbance can affect neuronal plasticity 
and synapses and can exacerbate AD(180)(Fig-
ure 2c).

NF-κB
Nuclear factor-κB (NF-κB) is a regulator of 

various genes involved in the production of cy-
tokines, chemokines, NO, and COX-2, which 
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Figure 1. Summary of APP metabolism in two different ways: amyloidogenic and non-amyloidogenic pathway: 
1-in the amyloidogenic pathway, β-secretase dissociates APP from its Aβ part from the long side of the APP. The product 
of this action is soluble APPβ and β-CTF, which consists of Aβ and AICD parts. Finally, γ-secretase cut the other end of 
Aβ connected to the AICD and separate them. Accumulation of Aβ causes Amyloid plaque and AD. 2- in the non-amy-
loidogenic pathway, first, α secretase dissociates APP to soluble APPα and α-CTF. This dissociation does not occur in the 
junction of sAPP and Aβ, but it occurs among Aβ. Then γ-secretase separates the small part of Aβ (also called p3), a part 
of α-CTF, from AICD. This pathway cannot lead to the formation or accumulation of amyloid plaques.

Figure 2. Summary of inflammatory cytokines in Alzheimer's Disease 
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Figure 3. The interaction of significant etiologies the initiation of neuroinflammation through pro-inflammatory cyto-
kine secretion.

mediate neuroinflammation and the activation 
of microglia and cause phagocytosis (181). It is 
a member of a family of inducible transcription 
factors and has five members: NF-κB1 (p50), NF-
κB2 (p52), RelA (p65), RelB, and c-Rel (182). The 
NF-κB proteins are bound to IκB family proteins, 
which inhibit the activity of these proteins (183). 
The most important IκB protein is IκBα. Addi-
tionally, p105 and p100, the precursor proteins of 
NF-κB1 and NF-κB2, have a C-terminal portion 
with a similar structure to IκB and probably have 
NF-κB inhibitory functions (80, 184, 185). 

Two major signaling pathways are responsi-
ble for the activation of NF-κB: Canonical and 
Non-canonical pathways (186, 187). The canon-
ical pathway starts from the activation of the 
multi-subunit IκB kinase (IKK) complex. It has 
two catalytic subunits, including IKKα and IKKβ. 
Besides, a regulatory subunit called NF-κB essen-
tial modulator (NEMO) or IKKγ also gets involved 
in the IKK complex (181, 188, 189). Cytokines, 
microbial components, and stress are some of the 
most common triggers of the canonical pathway, 
which act via different receptors such as various 

cytokine receptors, pattern-recognition receptors 
(PRRs), T-cell receptor (TCR), B-cell receptors, 
and TNFR superfamily members (190, 191). Ac-
tivation of IKK leads to the phosphorylation of 
IκBα, which triggers a ubiquitin-dependent IκBα 
degradation in the proteasomes. Finally, NF-κB is 
released in the cytosol, transferred to the nucle-
us, and regulates relevant genes (80, 192). Despite 
canonical pathways that respond to various types 
of stimuli, non-canonical pathways only respond 
to a specific group of stimuli, such as LTβR, BAF-
FR, CD40, and RANK, which are members of 
the TNFR superfamily (193-196). Additionally, 
activation of NF-κB via this pathway depends on 
p100, an NF-κB2 precursor protein (197, 198). 
NF-κB-inducing kinase (NIK), in cooperation 
with IKKα, phosphorylates p100, which fur-
ther induces its ubiquitination and processing 
(199, 200). At the final step, degradation of p100 
C-terminal IκB-like structure leads to the release 
of NF-κB2 p52 and activation of further signal-
ing pathways (201-203). The canonical pathway 
is the main pathway for immune response, and 
the non-canonical pathway has a complementary 
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role and, in the adaptive system, cooperates with 
the canonical pathway (185, 204). T cells, partic-
ularly CD4+ T-helper (Th) cells, are also involved 
in this cascade, which activates different proteins 
and genes, activating proinflammatory cytokines 
and releasing potentially toxic compounds that 
cause neurotoxicity, ultimately neuronal dysfunc-
tion, and cell death (205). Activation of naïve T 
cells occurred upon the stimulation of TCR by a 
specific antigen, which further activates the ca-
nonical pathway of NF-κB. RelA and c-Rel, two 
important members of NF-κB, have a central role 
in this process (206). Additionally, NF-κB pro-
motes Th1 differentiation. Aronica et al. suggest-
ed that inhibition of NF-κB in T-cells leads to the 
Th1 response impairment (207). 

A non-canonical pathway is required for proper 
differentiation and function (memory/effector) of 
T cells. Additionally, this pathway is required for 
Th17-mediated neuroinflammation (208-211). 
Some studies suggested that NF-κB activation 
increased BACE1 and APP genes, as both NF-κB 
and BACE1 are upregulated in the AD patients’ 
brains (212, 213). Furthermore, aging, one of the 
most important risk factors for AD, leads to the 
perpetual activation of NF-κB, which further ac-
tivates microglia, neuroinflammation, and the de-
velopment of AD (214). Receptors for advanced 
glycation end products (RAGE) are receptors of 
advanced glycation end products (AGEs)(215). 
However, studies showed that Aβ is a ligand for 
this receptor (216). Interestingly, these receptors 
are overexpressed during neuroinflammation in 
microglia (216, 217). Binding of Aβ to RAGE ac-
tivates which further induces NO and glutamate 
release, cytokine production, and BBB amplifica-
tion (218, 219). NO combines with superoxides, 
which are associated with oxidative stress and 
BBB dysregulation (220, 221). Additionally, glu-
tamate release leads to neuronal toxicity and de-
generation (222, 223).

NLRP3 Inflammasome
Inflammasomes are large multiprotein com-

plexes assembled by different receptors such as 
TLRs and NOD-like receptors (NLRs). Inflam-
masomes induce pyroptosis, characterized by the 
activation of caspase-1-mediated inflammatory 
response (224, 225). Several inflammasomes have 
been discovered, such as NLRP1, NLRP2, NLRP3, 

AIM2, and NLRC4 (226). Among these inflam-
masomes, the most well-studied one is NLRP3. 
NLRP3, a 118 kDa PRR protein, is a cytosolic pro-
tein expressed by different cells such as neurons, 
microglia, neutrophils, and macrophages. It has a 
C-terminal leucine-rich repeat (LRR) domain and 
a central ATPase-containing NACHT domain re-
quired for oligomerization. Besides, its N-termi-
nal pyrin (PYD) domain recruits proteins for the 
formation of the inflammasome complex. NLRP3 
inflammasome is composed of a sensor (NLRP3 
protein), an adaptor (apoptosis-associated speck-
like protein, ASC), and an effector (caspase-1) 
(224, 225, 227, 228). Activation of NLRP3 and 
its inflammasome formation could be triggered 
by a plethora of stimuli such as pathogens, uric 
acid crystals, silica, asbestos, extracellular ATP, 
and toxins (229, 230). Some studies hypothesized 
that NLRP3 activation is due to the common cel-
lular events caused by this wide range of stimu-
li instead of directly binding to them (231, 232). 
Disruption of the trans-Golgi network (TGN) 
by multiple NLRP3 stimuli resulted in binding 
of NIMA-related kinase 7 (NEK7), an important 
NLRP3 inflammasome modulator, to NLRP3, 
which further disrupts the NLRP3 double-ring 
structure, inactive structure, and causes struc-
tural rearrangement. Structural rearrangement of 
NLRP3 exposes its PYD domain, which further 
associates with NACHT domain oligomerization. 
After the activation of the NACHT domain, the 
PYD domain recruits ASC and forms the ASC 
pyroptosome via PYD-PYD domain interaction 
(233-236). At the next step, the caspase recruit-
ment domain (CARD) of ASC interacts with the 
pro-caspase-1 ASC domain, which further con-
verts pro-caspase-1 to its active form, caspase-1. 
Caspase-1 not only converts pro-IL-1β and pro-
IL-18 into their active forms, IL-1β and IL-18, 
respectively, but also activates the membrane 
pore-forming gasdermin D (GSDMD), a critical 
protein for pyroptosis (227, 237, 238). 

NLRP3 inflammasomes are involved in the 
pathogenesis of autoinflammatory diseases, in-
cluding diabetes, obesity, and AD (227). Similar 
to the NF-кB pathway, NLRP3 has also been acti-
vated via canonical and non-canonical pathways. 
Two signals are required to activate the canoni-
cal pathway. Priming signal (first signal) includes 
TLR ligands and cytokines such as TNF-α and 
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IL-1β, leading to the activation of NF-кB and 
further upregulation of NLRP3 and pro-IL-1β ex-
pression. The second signal (an activating signal) 
activates NLRP3 activation, followed by NLRP3 
inflammasome, caspase-1-mediated secretion of 
IL-1β and IL-18, and pyroptosis. There are differ-
ent activating signals, such as mitochondrial dys-
function, ion flux, including K+ efflux, Cl- efflux, 
Na+ influx, ROS, and lysosomal disruption (227, 
238). Caspase 4 and caspase 5 are involved in the 
NLRP3 non-canonical pathway in humans. These 
caspases bind to LPS directly, which leads to their 
autoproteolysis and activation. Finally, caspase 
four and caspase 5 induce pyroptosis by activa-
tion of GSDMD or triggering of K+ efflux (239). 

NLRP3 inflammasomes are expressed abun-
dantly in microglia and astrocytes. Interestingly, 
the NLRP3 inflammasomes expressed in astro-
cytes are non-functional, and stimuli could not 
induce IL-1β and IL-18 secretion in them (240). 
Halle et al. found that NLRP3 inflammasomes 
could be activated by Aβ, which leads to IL-1β 
and IL-18 production and further inflammation 
(241). Some studies suggested that NLRP1 in-
flammasomes are expressed in neurons, and Aβ 
could activate them, but the expression of NLRP3 
remains controversial (242). Besides, chronic ex-
pression of NLRP3 inflammasomes in microglia 
disturbs their clearance capacity for Aβ and NFTs, 
which further exacerbate AD (243). These find-
ings are consistent with Heneka and colleagues’ 
study, which found that NLRP3- or caspase-1-de-
ficient APP/PS1 mice were resistant to neuroin-
flammation, AD, and amyloid plaque (244).

TREM2
TREM2 (the triggering receptors expressed on 

myeloid cells 2) is a cell surface transmembrane 
glycoprotein with a cytoplasmic tail (245), which 
is expressed in some subgroups of myeloid cells, 
such as granulocytes and dendritic cells (246-
248). TREM2 is expressed by microglia, and it 
has higher expression in the hippocampus and 
spinal cord, which suggests its CNS region-de-
pendent expression (249). Inflammation and its 
related cytokines, such as TNFα and IL1β, de-
crease, and anti-inflammatory molecules increase 
TREM2 expression (250-252). TREM2 acts via an 
intracellular adaptor called DAP12 (DNAX-ac-
tivation protein 12, also known as TYROBP) 

through the TREM2 cytoplasmic short tail. The 
interaction between a positively-charged lysine 
in TREM2 and a negatively-charged aspartic acid 
in DAP12 regulates further intracellular events. 
TREM2 ligation to DAP12 activates Src family 
kinases, which generate tyrosine phosphoryla-
tion of DAP12 within its immunoreceptor tyro-
sine-based activation motifs (ITAMS). ITAMS 
phosphorylation makes a docking site for SH2 
domains of different molecules, which is associ-
ated with immune response via a cascade of sig-
naling molecules. TREM2 signaling components 
such as PI3K, Akt, and MAPK are activated via 
Syk, a principal kinase recruited by ITAM (253-
259). TREM2 ligands have not been identified 
well, but their functions have been studied. It 
increases phagocytosis rate, Aβ uptake, and my-
eloid cell number and survival. Furthermore, it 
decreases inflammation via modulation of TNFα 
and NO synthase-2 transcription (NOS2)(253, 
260-263). However, studies suggested a dual role 
of this signaling pathway, with some considering 
an inflammatory role for TREM2 (264, 265).  PD, 
amyotrophic lateral sclerosis (ALS), stroke, trau-
matic brain injury, and AD are some of the patho-
logical conditions in which TREM2 expression is 
upregulated. It seems that TREM2 overexpression 
in AD recruits microglia to amyloid plaques (227, 
266, 267). Interestingly, some studies suggested 
that Aβ could directly bind and activate TREM2 
(268). On the other hand, lack of TREM2 expres-
sion is associated with a reduction of late-stage 
amyloid plaque accumulation(269). However, re-
duction of TREM2 expression is associated with 
Tau spreading around amyloid plaque (266, 270). 
Studies showed the involvement of TREM2 in 
different inflammatory pathways, such as NF-кB. 
Cosker et al. found that TREM2 inhibits neuroin-
flammation by inhibition of NF-кB (271). An-
other similar study found the downregulation of 
PI3K/AKT by TREM2 for inhibition of neuroin-
flammation (272). Taken all together, TREM2 has 
a dual role in AD and could enhance some patho-
logical features and relieve others. 

cGas-STING
Detection of foreign DNAs is a crucial part of 

the immune system. In mammals, cyclic GMP–
AMP synthase (cGAS)–stimulator of interferon 
genes (STING) pathway is responsible for this de-
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tection and induces a powerful immune system 
response against these foreign DNAs (273). cGAS, 
part of this pathway, is an innate immune system 
receptor, and its functional part is STING. Acti-
vation of cGAS by DNAs leads to the conversion 
of ATP and GTP to a cyclic dinucleotide 2030-cy-
clic GMP-AMP (cGAMP). This activation occurs 
via the C-terminal part of this molecule. This part 
has a nucleotidyltransferase domain (the catalytic 
part) with a positively charged DNA-binding site. 
Binding of DNA to this part leads to the cGAS 
conformational changes and rearranges its cat-
alytic part, which allows it to convert ATP and 
GTP (274-277). At the next step, cGMP activates 
STING, which is located on the ER (278, 279). 
Conformational changes of STING lead to the 
binding of this molecule to TBK1, which further 
phosphorylates the transcription factor interfer-
on regulatory factor 3 (IRF3). IRF3 is transferred 
to the nucleus, which results in the production of 
Type-I IFNs and some inflammatory cytokines 
(273). Studies showed that STING could medi-
ate a non-canonical pathway of autophagy, which 
requires limited types of molecules such as PI3P 
effector WIPI2 and the ATG5-12-16L1 complex 
(280-282). The advantage of this pathway is the 
restriction of viral propagation (283). Interesting-
ly, some studies suggested that this pathway could 
prevent tumor growth by induction of autophagy 
in the cell during proliferation (284). STING up-
regulates p21 and other cell-cycle inhibitors along 
with proapoptotic proteins (285, 286). Addition-
ally, phosphorylated IRF3 could induce apoptosis 
by interaction with BAK and BAX (287-290). Even 
under conditions in which apoptosis is restricted, 
activation of STING leads to the RIPK3-depen-
dent necroptosis development, which occurs via 
type I interferon and TNF signaling pathways 
(291-293). 

One of the critical signaling pathways in neu-
roinflammation is cGAS/STING/IFNs. Several 
studies showed the abundance of cGAS/STING 
in different neuroinflammation-related disor-
ders. One of the main elevated types of interfer-
ons during neuroinflammation is IFN-I, a main 
product of the cGAS/STING pathway. It has re-
ceptors on microglia, astrocytes, and neurons 
(227, 294). Activation of microglia by IFN-I leads 
to the pro-inflammatory cytokine production 
and neuroinflammation (295, 296). Wang et al., 

showed that STING could regulate the activa-
tion of NLRP3 (297). Another study held by Jin 
and colleagues showed that polyglutamine bind-
ing protein 1 (PQBP1), an important protein for 
splicing, transcription, and cognitive functions of 
the brain, interacts with tau 3R/4R proteins, re-
sulting in cGAS/STING activation and further 
immune response (298).

Genetics
The trace of genetics can be found in almost 

every disease, and it is also important in neu-
roinflammation and neurodegeneration. Several 
genes have been identified for early onset AD, PD, 
neuroprotection against inflammation, induc-
tion, and early resolution of inflammation in the 
CNS(299, 300). Four well-studied genes involved 
in AD are PSEN1, PSEN2, APP, and APOE4. 

PSEN1

PSEN1 is located on chromosome 14q24.3 and 
encodes PS1, a multi-spanning transmembrane 
protein with a hydrophilic loop (301, 302). Its 
N-terminal and hydrophilic loop are available 
for interaction with other proteins. Besides, PS1 
is a highly conserved 50 kDa protein found in 
different brain regions such as the dentate gyrus, 
neocortex (especially in layers II and IV), the 
CA1-CA3 layers, and the subiculum of the hip-
pocampus. The intracellular location of PS1 is 
in intracellular membranous organelles such as 
the ER, nuclear envelope, and Golgi apparatus. 
Mutations of PSEN1 are the first cause of famil-
ial Alzheimer’s disease (FAD)(303). PS1 is a cat-
alytic subunit of γ-secretase, and as mentioned 
above, this enzyme plays a crucial role in the pro-
duction of Aβ and the development of AD (304, 
305). However, the exact role of PS1 in the de-
velopment of AD remains debatable. Two main 
hypotheses have been developed to explain the 
role of PS1 in FAD: the amyloid and presenilin 
hypotheses. The former one proposed that muta-
tions of PSEN1 lead to the overproduction of Aβ 
and further development of AD (306, 307). This 
hypothesis has been evolved and proposed that 
PSEN1 mutations increase the Aβ42/Aβ40 ratio. 
(308). Presenilin hypothesis provides an alterna-
tive view and proposes that mutations of PSEN1 
cause loss of function of its protein, which is as-
sociated with dementia and neuroinflammation 
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(309). This hypothesis is supported by several 
studies, which showed that PSEN1 is important 
in the survival of neurons during aging, as well as 
learning and memory (310-312). Besides, PSEN1 
loss of function disturbs γ-secretase activity. As 
Xi et al. showed, despite decreased production 
of both Aβ42 and Aβ40 after γ-secretase loss of 
function, Aβ42/Aβ40 increases, which is further 
associated with AD development (313). 

PSEN2

PSEN2 was first reported as a causative gene 
for AD development in 1995 (314). It is located 
on chromosome 1q42.13 and encodes the PSEN2 
protein (315). PS1 and PSEN2 are homologous 
proteins with 67% similarity (316). Their hy-
drophobic region is highly conserved, and their 
difference is in their N-terminal and hydrophilic 
loop (315). PSEN2 has two isoforms: Isoform 1 
is found in different tissues such as the placenta, 
liver, and kidney, and Isoform 2 is found in the 
brain, placenta, and skeletal muscles (315). Like 
PS1, this protein is also a subunit of γ-secretase, 
and PSEN2 mutations could change the activity of 
this enzyme and further AD development. PSEN2 
like PS1 resides in ER and Golgi appartus (317). 
Studies showed that some mutations of PSEN2 
increase Aβ production, while others change the 
intracellular calcium signaling (318-320). 

APP

APP or amyloid beta precursor protein is the 
substrate of enzymes for the production of Aβ 
and further development of AD. It is a high-
ly conserved protein encoded by the APP gene 
(321-323). APP is an integral membrane protein 
with a large extracellular and small intracellular 
region. Its extracellular region has two subdo-
mains: E1 and E2, which are linked to each oth-
er by an acidic domain (324). APP is expressed 
in different tissues such as skin, adipose tissue, 
muscles, and CNS, but its main functions are in 
the CNS, which are the regulation of synapse for-
mation, enhancing synapse adhesion, increasing 
neuronal viability, and axon pruning (325-327). 
APP mutations could increase the Aβ42/Aβ40 
ratio and increase Aβ generation. Additional-
ly, mutations could impair α-secretase action on 
the APP and increase the hydrophobicity of Aβ, 
which is further associated with amyloid plaque 

formation (328-330). Several mutations have 
been identified, including: 1) Mutations in the 
N-Terminal of Aβ Domain: K670N/M671L is an 
example of this type of mutation, which leads to 
the lysine-to-asparagine substitution at codon 
670 and a methionine-to-leucine substitution at 
codon 671, are within the extracellular part of 
APP at the β-secretase cleavage site and increase 
both Aβ40 and Aβ42 (331, 332). 2) mutations in 
the Aβ Domain: For instance, E693G increases 
Aβ protofibril formation (333, 334). 3) Mutations 
in the C-Terminal of Aβ Domain: These muta-
tions disturb their respective secretases and lead 
to the production of longer Aβ (Aβ42), which 
aggregates easily (330, 335). 4) A673V mutation 
(substitution of alanine to valine at codon 673) 
increases production of Aβ(336). 5) A673T (al-
anine-to-threonine substitution) decreases Aβ 
formation and has a protective role against AD, 
probably via impairment of BACE1 cleavage of 
APP (337, 338).

APOE4

Apolipoprotein E (APOE) is located on the chro-
mosome 19q13.32 and is a primary apolipopro-
tein lipid and cholesterol transporter in the CNS 
(339, 340). It also enhances the transportation of 
lipids via different cells by acting as a ligand of 
low-density lipoprotein receptor (LDLR) and li-
poprotein receptor-related protein (LRP)(341). 
APOE is composed of N-terminal and C-terminal 
domains linked by a hinge, and its isoforms are 
mainly different in the N-terminal of this protein 
(339). 

APOE has 3 isoforms: E2, E3, and E4. APOE4 is 
the strongest risk factor for AD development, as it 
influences different aspects of AD (342). APOE4 
is associated with more Aβ accumulation and ag-
gregation in the brain (343-345). Additionally, 
some studies reported that APOE4 could change 
the clearance of Aβ (346). It also influences tau 
pathology via induction of neuroinflammation, 
increase of neuronal accumulation, and redistri-
bution of this protein (347-349). Furthermore, 
induction of a more damaging related reactive as-
troglia signature in APOE4 harboring mice indi-
cates its effect on astrocytes (347, 350, 351). Prasad 
et al. showed that APOE4 could restrict the ability 
of astrocytes in amyloid clearance (351). APOE4 
could also promote disease-associated microglia 
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(DAM) in the brain. These microglia are involved 
in the induction of neuroinflammation and tau 
pathology (352-354). 

Non-coding RNAs
Regulation of gene transcription depends on 

several factors, and non-coding RNAs (ncRNAs) 
are one of the crucial parts of gene transcription 
regulation. Long non-coding RNAs (LncRNAs), 
microRNAs (miRNAs), and circular RNAs (Cur-
rans) are three important members of this family. 
LncRNAs are RNAs with more than 200 nucleo-
tides that interfere with mRNA and/or miRNAs. 
miRNAs have 18-24 nucleotides. miRNAs bind 
to mRNA and lead to the degradation of mRNA. 
CircRNAs are closed LncRNAs that have similar 
roles to LncRNAs. Some of the ncRNAs and their 
targets are shown in Table 1. 

miR-155 is a highly conserved miRNA and is 
important for the immune system and T-help-
ers. Studies showed that this miRNA could lead 
to neuroinflammation. miR-155 decreases the 
endogenous anti-inflammatory cell response, 
which is further associated with neuroinflam-
mation and brain damage. It is also involved in 
the inflammatory response after CNS ischemia, 
Parkinson's disease, MS, ALS, and traumatic 
brain injury (355-360). Guedes et al. investigated 
the functional role of miR-155 in AD using the 
3xTg AD animal model.  They showed a strong 
upregulation of miR-155 levels in the brain of 
3xTg AD animals. Simultaneously, the rise of 
microglia and astrocytes activation rate suggests 
neuroinflammation. Furthermore, they investi-
gated whether miR-155 and c-Jun are involved in 
the Aβ-mediated activation of glial cells. Results 
showed the upregulation of these two molecules 
in mouse models and Aβ-activated microglia and 
astrocytes. Taken all together, miR-155 could be a 
promising therapeutic factor for the reduction of 
neuroinflammation in AD (361).

Neuroblastoma differentiation marker 29 
(NDM29) is an LncRNA, and its transcription 
is mediated by RNA pol III (362). Its expression 
could be influenced by the expression of pro-in-
flammatory cytokines such as TNF-α and IL-1α 
(363). Interestingly, this LncRNA could induce 
differentiation of neuroblastoma (NB) cells to 
a non-malignant neuron-like phenotype (364, 
365). Massone et al. investigated the role of NDM-

29 on APP synthesis. Results showed an increase 
in Aβ secretion and Aβ42/Aβ40 ratio. Further-
more, expression of this LncRNA and further Aβ 
formation could be influenced by inflammation 
(increase of NDM29 and Aβ formation). The ex-
pression of NDM29 is increased in the brain of 
neurodegenerative disease patients, indicating 
that NDM29 provides a situation in which Aβ 
could be formed in the extracellular space (366). 

ciRS-7, a 1500 nt circular RNA located on 
chromosome Xq27.1, was first identified in 2011 
(367, 368). It is an antisense of cerebellar degen-
eration-related protein 1 (CDR1AS) without a 
3' poly-A tail and a 5' cap, indicating its circular 
structure. It has more than 70 seed regions for 
miRNAs, and most of them are for miR-7 (368, 
369). Short interspersed nuclear elements up-
stream and downstream of the ciRS-7 gene induce 
its transcription (369). Zhao et al. investigated 
the ciRS-7 role in AD development. They found 
a disruption of the ciRS-7-miRNA-7-UBE2A axis 
in the hippocampal CA1 and Broadmann A22 of 
the AD patients’ brains. ciRS-7 acts as a sponge in 
the brain, and its deficit leads to higher levels of 
miR-7, which are further associated with down-
regulation of this miRNA targets. One of the miR-
7 targets is the ubiquitin conjugating enzyme E2A 
(UBE2A), which is required for the ubiquitin-26S 
proteasome system, a critical complex for amyloid 
peptides clearance. Taken all together, the results 
indicated that dysfunction of the aforementioned 
axis leads to the formation of amyloid plaque and 
AD development (370). 

Possible Etiologies of Neuroinflamma-
tion 
Pathogen Aspects of Neuroinflammation and 
AD

Studies showed that bacterial and viral infec-
tions are important in the progression and devel-
opment of cognitive decline in AD patients. Fur-
thermore, AD itself increases the vulnerability to 
the effects of peripheral infection with bacteria or 
viruses (371). 

Herpes simplex virus-1 (also called HSV-1) 
is one of these pathogens involved in AD devel-
opment. It is a latent infection of the CNS, and 
studies confirmed the presence of HSV-1 DNA in 
brain regions that are also involved in AD, such 
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Table 1. The connection of Non-coding RNAs (ncRNAs) with neuroinflammation and Alzheimer’s disease 
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as the hippocampus (372). Additionally, this virus 
increases amyloid-β production, and it is a prom-
inent risk factor in patients with Apolipoprotein 
E4 (APOE4) for further AD development (373-
375). Another lifelong infection is cytomegalovi-
rus (CMV), which is linked with accelerated cog-
nitive decline and AD development (376, 377). 
Human Immunodeficiency Virus (HIV) is anoth-
er chronic lifelong infection that can penetrate 
the BBB and proliferate in the CNS and cerebro-
spinal fluid (CSF). This virus could induce chron-
ic neuroinflammation through its gp120 and TAT 
protein, which exacerbates neurodegeneration. 
Besides, it increases amyloid deposition in the 
brain, which could be a risk factor for further AD 
development (378, 379). Several cohort studies 
confirmed the increased rate of Human Herpes-
Virus (HHV)-6A and HHV-7 infection in AD pa-
tients. Like other viruses mentioned above, these 
viruses cause persistent infection, chronic inflam-
mation, and further glia activation, which could 
accelerate AD development and progression (380, 
381). Some studies confirmed that Epstein-Barr 
Virus (EBV) is a risk factor for AD development 

and progression, especially in APOEε4 carriers. 
Besides, serologic EBV positivity in patients with 
AD and EBV IgG plasma levels is correlated with 
cognitive decline and AD progression (376, 382).

Several bacterial pathogens have also been as-
sociated with AD. Chlamydia pneumoniae, an 
obligate intracellular, Gram-negative bacterium, 
increases the AD development risk up to fivefold 
(383). It passes through the BBB, infects microg-
lia, astrocytes, and neurons, and causes chronic 
inflammation. Additionally, it increases Aβ depo-
sition in the brain and tends to aggregate in the 
hippocampus more than in other parts of the 
brain (384, 385). Heliobacter pylori (H. pylori), 
another Gram-negative bacterium, is also signifi-
cantly associated with AD and dementia in the 
elderly. H. pylori increases the severity of cogni-
tive decline, pro-inflammatory cytokines, and tau 
protein in the brain (386, 387). An interesting risk 
factor for AD is periodontitis. Studies showed 
that healthy elderly individuals with periodontitis 
have higher levels of amyloid in the CNS (388). 
Treponema species are involved in periodonti-
tis, and some studies showed an increased sus-
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ceptibility to infection with Treponema species 
in AD patients, but there is no cause-and-effect 
relationship between these pathogens and AD 
(389). Borrelia burgdorferi is also involved in 
periodontitis. It could induce Aβ accumulation in 
the brain through neurons and glia (390). Studies 
suggest a tenfold increase in the AD development 
in the context of spirochetes such as B. burgdor-
feri infection (383). P. gingivalis, a Gram-negative 
bacterium involved in chronic periodontitis, is a 
strong risk factor for AD, which could reproduce 
hallmarks of AD in wild-type mouse models due 
to the ability of P. gingivalis to induce Aβ and tau 
production in the brain (384, 391). Dominy et al. 
found a positive correlation between the level of 
some toxic proteases of P. gingivalis called gingi-
pains in the AD patients’ brains and tau and ubiq-
uitin pathology (392). Besides infections, various 
etiologies can contribute to the initiation of neu-
roinflammation and the subsequent neurodegen-
eration. 

Metabolic Aspects of Neuroinflammation and 
AD

Another important aspect of AD is metabolic 
dysfunction. Metabolic syndrome (MetS), which 
is a consequence of modern lifestyle, is a risk fac-
tor for a wide range of chronic diseases. MetS is 
characterized by overweight, insulin resistance, 
high glucose levels, and hypertension, and studies 
showed that it has a critical role in AD develop-
ment and progression, especially in LOAD (393). 
The exact mechanisms are currently unknown, 
but some studies have suggested that MetS  induc-
es neuroinflammation and also increases amyloid 
plaque production (394, 395). The interaction of 
MetS and neuroinflammation in the development 
of AD is mentioned in Figure 3.

Diabetes Mellitus (DM)
Diabetes mellitus can potentially induce in-

flammation in the CNS (396) by two main mech-
anisms. Firstly, insulin resistance can occur in 
the CNS, causing an increase in insulin in the 
blood and the impairment of insulin signaling. 
An excess amount of insulin induces the secre-
tion of different cytokines and causes inflamma-
tion in the CNS. Insulin resistance is a risk factor 
for cognitive impairment and seems essential for 
the conversion of these impairments to AD. Mo-

lecular mechanisms need to be elucidated, but 
it seems that insulin resistance causes Ser-phos-
phorylation of the insulin receptor substrate 1 
(IRS1) instead of normal Tyr-phosphorylation. 
Furthermore, insulin resistance results in de-
creased phosphorylation of Akt, affecting several 
downstream components of the insulin pathway, 
including Glycogen synthase kinase-3 (GSK-3). 
The increase of unphosphorylated GSK-3 (active 
form) is correlated with Tau hyperphosphoryla-
tion and NFTs formation (397-399). It can also 
suppress the BBB insulin transporters (400, 401), 
which are essential for glucose transportation 
and metabolism across the neurons; therefore, 
the neurons’ available insulin would be decreased 
(401). Impaired insulin signaling and a decrease 
in insulin amounts cause neuroinflammation and 
neurodegeneration. Another important mech-
anism is amyloidogenesis. In the hyperglycemic 
state, which can be expected in DM, the APP deg-
radation has been disturbed (402, 403). Thus, the 
increment of Aβ can be associated with neuroin-
flammation and neurodegeneration. These ob-
servations have been seen in both streptozotocin 
(STZ) induced type 1 diabetes mellitus (DMT1) 
and high-fat diet-induced type 2 diabetes melli-
tus (DMT2) rodents (404, 405). Cao et al. inves-
tigated the role of sugar in AD in a transgenic 
AD mouse fed with sucrose-sweetened water and 
reported that, in comparison with the control 
group, sugar could accelerate the amyloidogen-
esis and exacerbate AD (405). In another study, 
Insub et al. found a relationship between AD and 
DMT2 through Aβ autoantibodies, as the level of 
Aβ autoantibodies was dramatically elevated in 
the patient serum of T2DM (406). Further stud-
ies revealed that diabetes mellitus is a potent risk 
factor for the development and exacerbation of 
AD by the acceleration of not only Aβ but also tau 
protein production and aggregation (407-409).

Obesity
Obesity induces a hyperinflammatory state, a 

situation in which inflammatory cytokines in-
crease and immune cells become activated (410, 
411). Although the mechanism of how obesity 
leads to a hyperinflammation state has not been 
completely understood, some studies suggest-
ed the role of leptin as an essential hormone for 
conducting inflammation in obese patients (412-



Rafiyan and Mojtahedi: Neuroinflammation in AD

167 Immunol Genet J, Vol. 8, No. 2, 2025, pp.150-188http://igj.tums.ac.ir

414). Leptin has a similar structure to cytokines 
(415) and has receptors on immune cells such as 
macrophages, T cells, and microglia. The activat-
ed microglia by leptin can cause IL-6 and IL-1B 
production (416, 417). Another important mech-
anism is the contribution of obesity to metabolic 
syndrome. Increased body fat, accompanied by 
adipocyte hypertrophy and hyperplasia, excessive 
cholesterol and glucose in blood, induces stress in 
adipocytes, causing the secretion of TNF-α and 
IL-6 alongside the ROS activation, causing a hy-
perinflammatory state in the body and increasing 
the risk of neuroinflammation and degeneration 
(67, 418-421). Additionally, ROS disrupts the BBB 
as detected by the serum increase of calcium-bind-
ing protein B (S100B), a glial-specific protein ex-
pressed primarily in astrocytes, and neuron-spe-
cific enolase (NSE)(422, 423). Therefore, BBB 
dysfunction could result in altered permeability 
and cerebrovascular integrity loss in the human 
hippocampus, a region involved in learning and 
memory that is early damaged in AD (423-425).  
Brain cholesterol levels directly influence Aβ for-
mation through stimulation of the amyloidogen-
ic pathway, since different experiments strongly 
suggest that cholesterol has an elevated affinity 
for APP and Aβ (423, 426, 427). Another possi-
ble mechanism for the hyperinflammatory state 
in obesity is the endoplasmic reticulum stress. 
ER is an important site for protein synthesis and 
folding, and the stress resulting from fat deposi-
tion and compression of adipocytes increases the 
need for protein and protein synthesis, trigger-
ing unfolded protein response (UPR) in it. UPR 
is the accumulation of unfolded proteins in the 
ER, which causes the pro-inflammatory cytokine 
release from adipocytes and inflammation (428-
430). Obesity has a strong correlation with DMT2 
and insulin resistance. ROS, hyperinflammation 
state, adiponectin secretion dysfunction, Excess 
lipid substrates and lipotoxicity, and changes in 
the gut microbiome are the main causes of insulin 
resistance in obesity. As mentioned above, insulin 
resistance could exacerbate amyloidogenesis and 
AD (431-433).

Gut Microbiome
The microbiota-gut-brain axis is a mutual com-

munication system that is connected via neural, 
immune, endocrine, and metabolic pathways. 

Alteration in gut microbiome is associated not 
only with gastrointestinal disorders but also with 
some neurodegenerative disorders, such as AD 
(434). Gut microbiome dysbiosis can increase 
the permeability of both the intestine and the 
blood-brain-barrier and expose the CNS to some 
microbiome products, such as lipopolysaccha-
rides (LPS) and small-chain fatty acids (SCFAs). 
These products could induce inflammation, in-
crease the production of pro-inflammatory cyto-
kines, and facilitate neuronal apoptosis (435, 436). 
Besides, dysbiosis could induce an unresolved in-
flammation in the gut and activate immune sys-
tem cells such as CD4+ T cells. These cells could 
further pass through the BBB and induce neu-
roinflammation (437). Microglia activation can 
also occur in this context and not only exacerbate 
the neuroinflammation but also impact astro-
cytes indirectly via microglia-astrocyte commu-
nication (438). Studies showed that Bacteroidetes, 
Rikenellaceae, and Tenericutes were increased, 
and Firmicutes, Verrucomicrobia, Proteobacte-
ria, Akkermansia, Allobacilum, and Actinobac-
teria were decreased in the gut in animal mod-
els of AD. These changes could enhance amyloid 
production and plaque-localized inflammation in 
the brain by a change in the activation of glia in 
the brain (439-442). Germ-free mice studies re-
vealed a reduction in brain-derived neurotrophic 
factor in germ-free mice. This factor is essential 
for synaptic plasticity and cognitive function, be-
sides studies confirmed its reduced expression in 
AD (443, 444).  Probiotics are living microorgan-
isms ingested for some gastrointestinal disorders 
as they can modulate the gut microbiome. Sever-
al studies confirmed that certain probiotics, such 
as Lactobacillus helveticus NS8, could ameliorate 
cognitive impairments and restore brain-derived 
neurotrophic factor (BDNF) content in the brain 
in the context of chronic stress (445). However, 
further studies are needed to determine the best 
combination of different probiotics for the max-
imum effect. The gut microbiome could also act 
directly through the vagus nerve. The acetylcho-
line neurotransmitter is released in response to 
vagus nerve stimulation and modulates the in-
flammation of the CNS by controlling the activ-
ity of immune cells. Thus, gut microbiome could 
alter the secretion of acetylcholine, and further 
changes in immune system function (446, 447). 
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Treatments for AD
Development of new drugs and therapeutic 

targets is an urgent need for AD due to its severe 
cognitive and neuropsychiatric symptoms. More 
than 100 agents in more than 150 clinical trials 
are in progress for the treatment of this disease, 
and disease-modifying therapies (DMTs) are the 
most common agents. More than 20 agents are in 
phase 3 of clinical trials (448). Treatment for the 
AD is classified into different types based on their 
mechanisms of action and several other variables. 
Two main types based on their mechanisms of 
the action are DMTs such as Aducanumab, Atu-
zaginstat (COR388), Azeliragon, and Blarcame-
sine (ANAVEX2-73), which act via different 
mechanisms including monoclonal antibody 
against Aβ plaques, reduction of neurodegener-
ation and neuroinflammation by inhibition of P. 
gingivalis protease inhibitor, reduction of inflam-
mation by antagonizing RAGE and inhibition of 
Aβ transport to the brain, reduction of oxidative 
stress, protein misfolding, mitochondrial dys-
function, and inflammation by targeting M2 and 
Sigma-1 receptors respectively. These are some of 
the common mechanisms of the DMT drugs for 
the reduction of AD development and symptoms 
(449-452). Another group is neuropsychiatric 
and cognitive symptoms relievers such as AVP-
786, Brexpiprazole, Ginkgo biloba, Guanfacine, 
and Nabilone. These drugs act via different mech-
anisms, including inhibition of acetylcholinester-
ase, inactivating NMDA receptors, and activation 
of Sigma1 receptors (453-457). These two types 
of AD treatments (DMT and neuropsychiatric/
cognitive symptoms reliever) account for about 
86% and 13% of all treatments, respectively (448). 
Additionally, there is a one-vaccine trial in the 
phase 3 (CAD106)(448). CAD106 is composed 
of different copies of Aβ1–6 with a carrier that is 
composed of 180 copies of bacteriophage Qβ coat 
protein. This vaccine induces Aβ antibodies with-
out involvement of Aβ-specific T-cell response 
(458-460). Collectively, there are numerous treat-
ments under investigation for AD treatment, 
and each of them acts via specific mechanisms. 
These drugs make new hopes for AD treatment 
soon. Targeting signaling pathways, especially 
inflammatory pathways and pro-inflammatory 
cytokines, to reduce neuronal damage and AD 
progression is another strategy. Anakinra and 

rilonacept are developed against IL-1, and canak-
inumab is against IL-1β (461-463). Several drugs 
are also developed based on the NLRP3 pathway. 
JC124, a NLRP3 inflammasome and caspase-1 
inhibitor, CY-09, which binds to the NACHT do-
main to inhibit NLRP3 ATPase activity, and sever-
al similar drugs are among this group (464, 465). 
Use of curcumin, phytochemicals such as Resver-
atrol, MW01-2-069A-SRM, a p38α MAPK inhib-
itor, are the strategies to inhibit NF-кB signaling 
pathway (466-468). Nicotinamide riboside (NR) 
is a promising therapeutic target for normalizing 
cGAS-STING in preclinical studies (469). Target-
ing macrophages could also be a successful strate-
gy. Increase in microglial phagocytosis and switch 
from M1 to M2 are two main strategies. PPARα 
is a nuclear receptor that promotes microglia re-
cruitment and phagocytosis and further increas-
es Aβ clearance. Gemfibrozil and Wy14643 are 
two PPARα agonists used to increase autophagy 
of microglia and structural neuroplasticity (469, 
470). Another member of the PPAR family is 
PPARу with opposite effects. PPARу antagonist 
T0070907 could enhance microglial autopha-
gy via Liver kinase B1 (LKB1)-AMPK pathway 
(470). LC3 is an important part of autophagy and 
phagosome formation. Anti-inflammatory drugs 
and cytokines such as dimethyl fumarate (DMF) 
and IL-4 could be used for upregulation of LC3 
and increased microglial autophagy (471-474). 
Switching from M1 to M2 macrophages due to 
their beneficial effects against AD progression 
could be used as another strategy for AD treat-
ment. L-cysteine-derived hydrogen sulfide (H2S), 
CaMKK inhibitor (STO-609), and T0070907 are 
used for this strategy (475-478).

Conclusion
AD is a multifactorial disease, and different 

mechanisms are involved in its pathogenesis. In-
flammation can be considered a principal mech-
anism in AD initiation and progression. Various 
studies have been done over the years to exam-
ine different parts of inflammation in the brain. 
Pro-inflammatory cytokines and inflammatory 
pathways are vital parts of inflammation. They are 
double-edged, either having a preventive and pro-
tective role against diseases or being harmful and 
damaging to the cells. Overall, in acute immune 
response, activation of inflammatory pathways 
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and production of pro-inflammatory cytokines 
are essential for proper immune system function, 
but if the immune system’s stimulator remained, 
the inflammation could be chronic, and in this sit-
uation, the cytokines can be harmful to the body 
the same as what occurs in Alzheimer’s disease. 
This article summarizes and discusses different 
aspects of AD, from its molecular pathways to gut 
microbiome and current treatments and clinical 
trials, and provides a new insight into AD de-
velopment and its promising therapeutic targets. 
Further studies would be needed to investigate 
the hidden aspects of this disease.
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