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Abstract
Multiple sclerosis (MS), an autoimmune chronic inflammatory, demyelinating disease, has affected over 2.5 
million people in the world, who are mostly in young adulthood ages. As the burden of this disease would 
highly influence the socioeconomic status of the societies, as well as the patient’s quality of life, any progress 
in better understanding the pathophysiology of this disease would be valuable.  MS is caused by a series of 
cell-mediated immune mechanisms involving CD4+ T-cell reactivation against CNS. Also, as the involvement 
of both innate and acquired immunities, different risk factors have been proposed for MS. Environmental 
factors such as smoking, Epstein-Barr virus infection, sun exposure and vitamin D, body mass index, gut 
microbiota, and melatonin disturbance may affect gene expression patterns through epigenetic changes, 
and therefore, play roles in disease occurrence. These epigenetic changes could be categorized as alterations 
in DNA methylation, histone modifications and non-coding RNAs. Moreover, the reversibility of these 
epigenetic changes could be potentially considered as therapeutic targets. Therefore, several experimental 
and preclinical studies have investigated medications for reversing the pathologic epigenetic changes in MS. 
Accordingly, the current review was conducted to gather the current findings on the role of epigenetics in 
the pathophysiology and also treatment of MS.
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Introduction
Multiple sclerosis (MS) is an autoimmune, 

chronic inflammatory, demyelinating disease that 
only affects the central nervous system (CNS)(1). 
Approximately 2.5 million people worldwide are 
affected by MS, which is noticeably more com-
mon in northern and southern latitudes. The dis-
ease onset is mostly in young adulthood, with a 
double-fold prevalence among females compared 
to males (2,3). It has been estimated that most pa-
tients with MS experience relapse-remission pat-
tern (RRMS) about 85% (4), which half of them 
progress to secondary progressive MS (PMS) in 
10 years (5).

It is currently believed that as an autoimmune 
disease, MS is caused by a series of cell-mediated 
immune mechanisms involving CD4+ T-cell re-
activation against CNS. Both innate and adaptive 
immunities are actively involved in inflammation, 
demyelination, and neurodegenerative processes 
of MS disease. CD4+ T-cells stimulate immune 
cells such as B-cells, CD8+ cells, mast cells, gran-
ulocytes, and monocytes. The Antigen Presenting 
Cells (APCs) reactivate CD4+ T-cells to produce 
cytokines and chemokines, which aggravate the 
inflammation by inducing myelin phagocytosis 
by affecting microglia and astrocyte activation 
(6,7).

Although specific causes of MS are not clearly 
understood yet, they are believed to have a mul-
tifactorial origin that includes a combination of 
several genetic and environmental factors. Recent 
studies have suggested different intrinsic and ex-
trinsic factors for the etiology of MS, which have 
also been approved by The Americas Committee 
for Treatment and Research in Multiple Sclerosis 
(ACTRIMS) Forum (8).

The roots of genetic evidence come from the 
number of disease occurrences in families, espe-
cially  first-degree relatives of MS patients who 
are at greater risk for developing the disease com-
pared to the general population (9). Till 2019, 
Up to 230 genetic variants have been firmly as-
sociated with an increased risk of developing MS. 
These genes are mostly involved in the regulation 
of immune response, which is common among 
other autoimmune diseases as well. Although all 
of these findings may suggest an etiological root 
for MS, we are still far from fully decoding MS 
genetic complexities (10,11).

Accordingly, genome-wide association studies 
and meta-analyses have identified genes that may 
cause susceptible individuals to develop the dis-
ease. Many of these genes play a role in the im-
mune system, with a prominent role for major 
histocompatibility complex (MHC) class II mol-
ecules, and in particular, the HLA-DRB1 alleles 
(3,12).

Genetics to Epigenetic
As there is a low concordance in disease oc-

currence among monozygotic twins, it could be 
concluded that genetics is not the only etiologic 
factor for disease. Meanwhile, different studies 
on monozygotic co-twins indicated no signif-
icant evidence for genetic or epigenetic differ-
ences that could explain this discordance (13). 
Studies on monozygotic twins are the most pow-
erful evidence for the role of epigenetics in MS. 
The most common proposed mechanism is DNA 
methylation. Prior studies have shown evidence 
of different representing types of DNA methyla-
tion in CD4+ T-cells in monozygotic twins with 
and without diagnostic signs of the disease (14). 
A large genome-wide association study (GWAS) 
designated ATXN1 as the most plausible gene as-
sociated with multiple sclerosis (MS) risk with-
in a disease locus mapping at 6p22.3 (15). Also, 
there was no evidence of genetic association with 
clinical course, severity of disease, or month of 
birth. Although in the previous studies, neither 
gender difference nor genetic association (e.g., 
DRB1*15:01) has been found, some animal in-
vestigations have indicated different methylation 
and expression levels of X genes (FOXP3) in the 
different inheritance of X chromosome from ei-
ther of the parents, which may possibly explain 
the cause of different concordance in gender. 
However, analysis with respect to age at onset 
replicated the previously suggested association 
with the DRB1*15:01 (3,16).

As a multifactorial disease, different etiologic 
factors, other than genetic ones, have been pro-
posed to play a role in the pathophysiology of 
MS. One of these risk factors could be epigenetic 
changes, including DNA methylation patterns, 
histone modifications, and non-coding RNAs, 
which may be caused by environmental factors 
such as smoking, Epstein-Barr virus (EBV) infec-
tion, sun exposure and vitamin D (vit. D), body 
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mass index (BMI), gut microbiota, melatonin dis-
turbances, and other factors (17-20) .

Considering a dynamic process, the epigenetic 
changes occur during differentiation and in re-
sponse to environmental factors (21). Also, epi-
genetics is one of the most promising heritable 
mechanisms influencing gene expression with no 
alteration in DNA sequences, which is associated 
with the incidence of MS (22). To find MS genet-
ic loci that are linked to a worsening of disability 
over time and to create and test ensemble genetic 
learning models that can identify people with MS 
(PwMS) who are at risk of getting worse in the 
future. Associated with a risk of disability getting 
worse, the majority are near or tagged to 13 ge-
nomic regions rich in pathways for the biosynthe-
sis of steroids and peptide hormones (23).

DNA Methylation
One of the most important epigenetic modifi-

cations is DNA methylation, which is associated 
with transcriptional repression through the addi-
tion of methyl groups to cytosine by DNA meth-
yl transferases (24).  DNA methylation occurs in 
unique regions of the genome, known as CpG is-
lands, that contain more than 50% cytosine and 
guanine nucleotides. Importantly, this process 
could be responsible for most of the aberrant gene 
expressions involved in several neurological dis-
eases (25,26). 

The first association of DNA methylation at 
HLA-DRB1 was observed in detecting methyla-
tion signal at chromosome 6p21, in which a peak 
signal at HLA-DRB1 and 74 CpGs were associated 
with MS. Importantly, and besides the significant 
effect of DRB1 methylation, 55 non-HLA CpGs 
also exhibited differential methylation, notably in 
some genes which were in association with MS 
disease (27).The most recent studies have also in-
dicated an association of differentially methylated 
regions (DMRs) with MS. The alterations in the 
methylation status of DMRs include hypometh-
ylation at HLA-DRB1 and hypermethylation at 
HLA-DRB5 in the relapsing-remitting (RRMS) 
MS. In addition, hypermethylation of several oth-
er MHC loci and also two non-MHC DMRs were 
identified in association with disease, which were 
mainly located at chromosomes 1 and 8 (28).

79 differentially methylated CpGs were asso-
ciated with MS. Different genome-wide studies 

showed significant differences in DNA methyla-
tion profiling between CD8+ T-cells, CD4+ T-cells, 
and whole blood DNA in MS patients. The meth-
ylation profile of CD8+ T-cells was distinctive 
from CD4+ T-cells (29). Despite the strong evi-
dence in hypermethylation of CD8+ T-cells, there 
was no association with CD4+ T-cells, whole 
blood DNA, or MS risk gene HLA-DRB1 locus in 
the CD8+ T-cells (29,30) .

When compared among two different subtypes 
of MS, the DNA methylation CpG sites and meth-
ylation alterations were more commonly found in 
primary progressive MS (PPMS) patients than in 
RRMS. Interestingly, while methylation alteration 
in PPMS mainly included hypermethylation, hy-
pomethylation was detected in RRMS patients. In 
these studies, 60% of DMSs detected on CpG-is-
lands and CpG-shores (31).

Commonly methylated in RRMS patients, the 
CpG sites in the L1PA2 subfamily could be sig-
nificant in the hypermethylation of repetitive el-
ements LINE-1 in these patients. Recent studies 
demonstrated that the methylation level of the 
CpG sites within the Alu, LINE-1, and SAT-α re-
petitive elements was elevated in RRMS patients. 
Moreover, expanded disability status scale (EDSS) 
values were associated with differential methyla-
tion in Alu and LINE-1 elements as well (32,33).

Some other studies indicated significant in-
creases in mRNA levels of DNA methyl-trans-
ferase enzymes (DNMTs).  In studies on MS pa-
tients’ demyelinated hippocampus, mRNA levels 
of DNA de-methylation enzymes and the total 
hydroxy-methylated levels were downregulated. 
Also, some differentially methylated positions 
(DMPs) were highly detected in those disease-af-
fected hippocampus (34). All of these results re-
inforce the role of epigenetics in the pathophys-
iology of MS.

Significantly altering the gene expression lev-
els, the proximal promoter of interleukin-2 recep-
tor-α has been found remarkably hypomethylated 
in MS patients with subsequent higher levels of 
gene expression in T-cells (35). As proven in the 
latest progress, methylation patterns of RUNX3, 
CDKN2A, SOCS1, and NEUROG1 genes were 
interestingly different between controls and MS 
patients but not between patients in relapse and 
remission phases (36) . 

Prior studies found that RRMS patients express 
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significantly lower levels of TET2 and DNMT1 
(37). In another study, the demethylating enzyme 
TET3 showed a lower expression level in second-
ary progressive MS (SPMS) patients than in the 
control group. TET3 enzyme is determined to 
be significantly related to the top three genes, in-
cluding APLP2 (amyloid beta (A4) precursor-like 
protein 2), SLC25A11 (solute carrier family 25, 
member 11), and ATP6AP2 (ATPase, H+ trans-
porting, lysosomal accessory protein 2)(38). The 
APLP2 gene plays a role in brain development, 
mainly by controlling neural stem cells.

The decreased levels of SLC25A11 in the pro-
cess of brain ischemia could be evidence of its role 
in the failure of energy metabolism (39). Finally, 
the expression of ATP6AP2 is detected in the late 
stages of adult neurogenesis in the hippocampus 
of animals (149). Besides, the clinical SPMS could 
possibly happen due to an altered balance in the 
expression of DNA methylating and demethylat-
ing enzymes. These changes in DNA methylation 
are in a balance of demethylation responding to 
environmental stimuli, which is involved in MS 
patients (38).

Comparison of the PAD2 enzyme expression 
in the white matter of MS patients with healthy 
controls showed significant upregulation in the 
enzyme level. The study also proved that the 
over-expression was associated with the PAD2 
promoter demethylation, which is located in a 
CpG island (40).     

Although in different studies, hyper/hy-
pomethylated repetitive elements were observed 
to be associated with MS, there is no evidence of a 
relationship between methylation status and dis-
ease activity, phase of MS, days since relapse, year 
of onset, multisystem disorder, spinal cord re-
lapse or the presence of oligo-clonal bands in CSF 
(33). Recent studies confirmed that the methyla-
tion and gene expression stages of m6A-associat-
ed genes in RRMS samples had been substantially 
better than those in revolutionary MS (PMS) ce-
rebrospinal fluid samples evaluation (4). Dynam-
ic methylation of m6A-RNAs is probably a new 
diagnostic biomarker to early distinguish PMS 
from RRMS and may provide a better prognosis 
for the disease (41,42).

Recently, preclinical access showed increased 
ataxin-1 levels with enhanced ATXN1 mRNA 
(43). Different hypomethylated sites within the 

ATXN1 genomic sequence of B cells have been 
reported in the clinical pathogenesis of this dis-
ease. These changes may be mediated by mR-
NA-upregulated TET1 according to RNA analy-
sis (44). New studies on EAE mice have shown 
an increase in the Treg function of the HDAC7 
R166H variant compared with conventional CD4 
T cells, and, in addition, it provides interesting 
protection against severe MS. We have revealed 
that the effects of HDAC7 are involved in mul-
tiple transcriptional programs, including Foxo1, 
Foxp3, STAT3, MEF2D, and Bcl6 (45).

Feroptosis Pathway
Ferroptosis, a novel iron-dependent pro-

grammed cell death pathway, has recently been 
shown to be involved in neurodegenerative dis-
eases. Many publications demonstrated that mi-
croglial resistance to ferroptosis due to the rapid 
loss of oligodendrocytes and demyelination (46-
48). Furthermore, ferroptosis has been reported 
to participate in neuroinflammation and neuro-
nal cell death following acute brain injury, which 
may be responsible for the pathogenesis. Ferro-
ptosis-associated factors and signaling pathways 
are now considered biomarkers and therapeutic 
targets of NDD. Proinflammatory microglia dis-
play anti-ferroptosis effects of neuroinflamma-
tion. Therefore, the exact role of ferroptosis in MS 
is unclear (49-52).

Supportingly, a new study on EAE mice re-
stored anti-ferroptosis gene expression, de-
creased inflammation-induced neuronal loss, 
and improved clinical outcomes. In a similar vein, 
G9a inhibition increased neuronal anti-ferroptot-
ic gene expression in human neuronal cultures 
while reducing it in MS brain tissue. G9a is found 
to be a crucial transcriptional enhancer of neuro-
nal ferroptosis and a potential therapeutic target 
for fighting inflammation-induced neurodegen-
eration (53).

Micro RNAs (miRNA)
The second epigenetic mechanism associated 

with MS is the microRNAs (miRNA). The miR-
NAs are the non-coding RNAs, including 21-24 
nucleotides, and regulate the expression of DNA 
by signaling pathways to the differentiation, 
apoptosis, or proliferation of the cells (54,55). The 
miRNAs play important roles in gene silencing by 
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degrading target mRNA sequences and prevent-
ing their translation into proteins. It has also been 
suggested that specific miRNAs are highly upreg-
ulated in active MS lesions (56). In the most re-
cent investigations on the expression levels of se-
rum miRNAs, several miRNAs were not only up 
or down-regulated in MS patients, but also the as-
sociation was observed between PPMS and SPMS 
and between relapsing and remitting phases of 
the disease in RRMS as well (57). These studies 
highly support the role of miRNAs as biomarkers 
of MS. Moreover, their potential contribution to 
MS pathology was correlated with the disease se-
verity and response to treatment (58,59).

In a study in 2017, nine miRNAs were demon-
strated as comparisons between different phases 
of the disease (relapsing-remitting and progres-
sive)(60). On the other hand, miR-27a-3p and 
miR 376b.3p expression levels were notably differ-
ent in RRMS compared to SPMS; also, some miR-
NAs demonstrated linkage with disease progres-
sion (miR-27a-3p the most significant), and some 
with the expanded disability status of the disease 
(miR.199a.5p the most)(61) . In addition, disabil-
ity progression index was remarkably correlated 
with increased levels of miR-24-3p. On the other 
hand, annual relapse rates in PPMS and RRMS 
were significantly associated with miR-128- 3p 
(62). Some researchers present different miRNA 
expressions even in two stages of the remission 
phase. Accordingly, miR-301a and miR155 were 
higher in the post-acute compared to the stable 
phase (63).

Evidence has defined the role miR-96 by tar-
geting the exact genes that take part in immu-
nological pathways by releasing interleukins and 
WNT. Notably, miR-96 showed significant levels, 
especially in remission of MS, while miR-18b and 
miR-599 played significant roles in relapse (64).

MiRNA-associated epigenetic studies have 
shown significant results regarding the associa-
tion of hypermethylated genes with special miR-
NAs. Similarly, T-cell activation genes are also 
up-regulated in MS whole blood mRNAs (65). 
Lower miRNA-21 levels and concomitant up-reg-
ulation of the target genes in CD4+ T-cells were 
also detected. Moreover, levels of important neu-
ro-steroids were suppressed in the white matter of 
MS patients, which were all in support of dysreg-
ulated miRNA levels in MS (66) . In a DNA meth-

ylation analysis on CD4+ T-cells from the patients 
with RRMS, secondary progressive-MS (SPMS), 
and healthy controls, significant differences were 
observed in the methylation status of VMP1/ 
miR-21 locus, and the level of methylation in pa-
tients with RRMS was remarkably higher than 
SPMS or controls. Also, there was a significant 
negative correlation between age and the levels of 
mature miR-21 in CD4+ T-cells. When compared 
to SPMS, the miR-21 level was significantly lower 
in the other subtype, RRMS (67).

Follicular helper T cells do not transmit demy-
elinating disease in mice and are unlikely to have 
a pathological effect in MS patients (68). It is not 
yet known whether follicular helper T cells play 
a role in MS. MHC class I-restricted CD8+ cells 
have been found in MS brain lesions, but also in 
patients with infections and other brain diseas-
es, so there is no conclusive evidence of their in-
volvement in MS (69).

The study by Hansen et al. in 2022 on peripheral 
helper T cells recognized two practically specific 
Tph cell populations and a regulatory partner, Tpr 
cells. No differences in blood frequency, cytokine 
generation, or the ability to cooperate with B cells 
were found between control and MS patients. To-
gether with comparable CNS migration potential, 
we found both enhanced Tph cell populations in 
the CSF, and amazingly, the extensive recurrence 
of intracortical Tph cells in the reference group 
was in contrast to the MS patients (70).

To Identify characteristic miRNAs, genetic 
studies suggested that epigenetic changes in the 
CNS take part in the pathogenesis of MS. For ex-
ample, low levels of the miR-191 affect distinct 
pathways, including FZD5, BDNF, WSB1, and 
SOX4. By the way, the products of these pathways 
start the inflammation in the CNS and destroy 
the myelin repair systems (71).

Similarly, MiR-125a-3p could slow the my-
elination process through dysregulation of some 
genes in MS patients (72). Eight miRNAs target 
the gene SOCS6 (suppressor of cytokine signal-
ing 6), and interestingly, the expression of these 
miRNAs is up-regulated in SPMS CD4+ T cells. 
SOCS6 was previously shown to have a negative 
role in the activation of T cells (59). The expres-
sion of miR-223 was demonstrated to target the 
genes such as signal transducer and activator of 
transcription 3 (STAT3) and Arginase-1 (ARG1). 
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Table 1. DNA methylation status in associated genes with MS
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As proven in MS patients, the STAT3 and ARG1 
expression were decreased compared with healthy 
controls (73). In addition, potential targets of 
miR-223 are STAT1, Forkhead Box O (FOXO1), 
and FOXO3. Besides, it has been proven that 
FOXP3 and RORC are upregulated in CD4+ T 
cells in the remitting phase. The expression of 
RORγt, the master transcription factor of Th17, is 
upregulated in the relapsing phase (74,75). BCL2, 
previously known as miR-15a/16-1 target gene, is 
defined to be respectively overexpressed in RR-
MS patients (76). miR-141 and miR-200a showed 
significant augmentation in the relapsing phase 
of the disease. On the other hand, the expression 
of target genes of these miRNAs displayed re-
markable down-regulation in the relapsing phase. 
Meanwhile, both miRNAs play a role in T helper 
cell differentiation pathways by activating TGF-β, 
mTOR, and JAK/STAT (77).

Demonstrating a correlation between these 
biochemical results and clinical parameters, dif-
ferent pathways have been suggested. miR-199a 
and miR-142-3p may be crucial for MS by tar-
geting pivotal susceptibility genes, in particular, 

KRAS and IL-7R (78).
A hypothesis proposes that extracellular exo-

somes, transferring microRNAs by exosomes, 
maybe the linkage between the gut microbiota 
and the host autoimmune diseases. Transferred 
let-7i can cause a decreased expression of insu-
lin-like growth factor 1 receptor (IGF1R) and 
transforming growth factor β receptor 1 (TGF-
BR1) and also play a role in the inhibition of T 
cell differentiation (79).

T cells and B cells are affected in the patho-
genesis of MS, especially in the relapsing phase, 
in which B cells act by producing matrix metal-
lopeptidase-9 (MMP-9) that disrupts the blood-
brain barrier (BBB). Down-regulation of miR-
320a leads to over-expression of MMP-9 protein 
in B cells of MS patients and acts in the patho-
genesis of the disease by increased blood-brain 
barrier permeability (80). Additionally, in eryth-
rocytes, different expressions of erythrocyte miR-
NAs were shown by using  RT-qPCR (specially 
miR-30b-5p and miR-3200-3p) in RRMS patients 
in comparison with healthy controls (81).

As with any other autoimmune disease, MS 
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Table 2. Alterations in miRNA expression levels in MS
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is more common in females; therefore, applying 
gender stratification to miRNA studies also dis-
played a gender specificity. miR-223-3p and miR-
379-5p were upregulated only in men, which 
influenced maintaining a stable MS course (82). 
In addition, some miRNA levels were not signifi-
cantly different between male patients and con-
trols; they displayed different levels in female pa-
tients (The most combination of MIR499A*C/T + 
MIR196A2*C)(85). Also, relapsing-remitting MS 
(RRMS) is mostly common in some specific gen-
otypes in women (83). In another study compar-
ing  MRI findings of MS patients, it was shown a 

variable microRNA evidence between lesions and 
atrophy measures  (84). In a study by Zailaie et al. 
11 miRNAs that were upregulated in MS patients: 
miR-145, miR-376 c-3p, miR-128-3p, miR-191-
5p, miR-26a-5p, miR-320a, miR-486-5p, miR-
320b, miR-25-3p, miR-24-3p, and miR-140-3p. 
Conversely, eight molecules were downregulated: 
miR-572, miR-15b, miR-331-5p, miR-23a, let-7 
c-5p, miR-16, miR-24, miR-137, and miR-181.

In terms of their potential usefulness, miR-145, 
miR-223, miR-128-3p, and miR-191-5p showed 
high sensitivity and specificity (85).

MS patients had a higher expression of miR-
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150-5p and miR-155-5p, while miR-15a-3p and 
miR-34c-5p were lower; they also  accessed these 
miRNAs among different types of MS, and  down-
regulation of miR-20a-5p, -33a-3p, and -214-3p 
and upregulation of miR-149-3p were seen asso-
ciated with remission phase of MS patients (86). 
Although the maximum association was found 
with miR-126.3p and miR-200c.3p. These mi-
croRNAs are up-regulated during the remission 
phase of the disease (82,87).

In a most recent study in 2022, the expression 
of miR-146a and miR-155 was markedly observed 
in RRMS compared with the control group. miR-
146a may be associated with vit. D deficiency and 
pathological disorders, and miR-155 may be asso-
ciated with attack frequency (88).

In another study between RRMS patients with 
healthy controls. RRMS had significantly higher 
plasma concentrations of miR-34a and -125a-5p, 
whereas CTR had significantly higher plasma 
concentrations of miR-146a-5p. For miR-155, 
no significant difference was noted. During the 
12-month follow-up, two patients experienced 
a clinical relapse due to increasingly severe dis-
ability. After 12 months of follow-up, there were 
no significant differences in circulating levels of 
miRNAs between patients with MRI activity and 
those without. In addition, patients who devel-
oped leukopenia during the 12-month follow-up 
period did not have significantly different circu-
lating inflammatory-miR levels at baseline (89).

Immunoglobulins that can pass through BBB, 
free light chains (FLCs), kappa (KFLC), and lamb-
da (LFLC) are associated with the disease, and as 
could be found in the serum and the CSF, they 
are available biomarkers. As proven, the KLFC in 
MS patients is increased so that it can be used as a 
high-sensitivity biomarker of MS (89-92).

Similarly, the other potential biomarkers of MS 
are known to be Inflammatory cytokines. Latest 
studies provided elevated IL-12B, CD5, eotax-
in-1, MIP-1a, and CXCL9. Moreover, some of 
them, like (CCL11 and CCL20) were associated 
with progression and severity (93).

Histone Acetylation
Another mechanism in epigenetic modifica-

tions is histone acetylation. Histones are known 
as proteins in the nuclei and act in folding the 
double-stranded chain of the DNA. Different re-

versible changes in the histones include acetyla-
tion and deacetylation. Acetylation at the lysine 
residues of the protein by histone acetyltrans-
ferases (HAT) plays a role in changing the ex-
pression of the gene and changes transcriptional 
factors binding sites on the gene. On the other 
hand, deacetylation mechanisms due to histone 
deacetylases (HDAC) accelerate histone methyl-
ations and inhibit transcription (14,94-96). His-
tone acetylation was dominantly seen in the white 
matter of the frontal lobes of aged patients with 
chronic MS. Also, in a subset of MS samples, an 
increased immune reactivity for acetylated his-
tone H3 was found in nuclei of mature oligoden-
drocytes (97). Histone deacetylation is an import-
ant change in the CNS of MS patients and EAE 
mice with myelin repair, as HDAC1 and HDAC2 
showed dysregulation in myelin synthesis and in 
the repair process of demyelinated sights. Also, 
HDAC genes showed an association with brain 
volume loss in the clinical phase of MS (76,97-
99).

Decreased histone acetylation and increased 
DNA methylation in oligodendrocyte lineage 
cells would enhance myelin repair, which has 
been proposed as supportive for MS. On the oth-
er hand, the same epigenetic process in T-cells 
would  augment their pro-inflammatory phe-
notype, which could exacerbate disease severity 
(100).

Interaction of Environmental Factors 
and Epigenetics of MS

Different factors are known to have relevance 
with exact epigenetic changes in the pathogenesis 
of MS, such as vit. D (histone modification), cig-
arette (DNA methylation), EBV (miRNAs), and 
short-chain fatty acids from gut microbiota (his-
tone modification). A possible cause of myelin 
damage and axonal loss might be due to oxidative 
stress, occurred by a decrease in antioxidant lev-
els (25).

Role of Vitamin D (vit. D) in MS
According to several studies, migration after 

the age of fifteen may put the migrant at risk of 
developing MS, similar to those living in the pri-
mary home country. However, in-migration be-
fore that age, the risk of MS would be the same 
as in the second country (2). Moreover, studies 
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on the worldwide distribution of MS incidence 
indicated a significant increase in northern and 
southern latitudes of the earth. Therefore, one of 
the causative factors for this pattern of disease 
distribution could be sunlight exposure, which 
has been reported to have a protective role in MS 
development and could be suggestive of the role 
of Vit. D as well (101). While the well-known act 
of Vit. D is calcium homeostasis; the other role of 
this element on immune regulation is determined 
to reflect on regulatory T-cell functions by direct 
effects on T-helper 1 (Th1) or Th2 cells (102).

Recent findings potentially support the role of 
Vit. D as an important environmental factor for 
MS (103). Higher serum levels of 25(OH) Vit. D 
has a protective effect on MS risk but not on the 
clinical course or the severity of the disease (104). 
One of the explanations for the role of vitamin 
D in the etiology of MS is the extensive genomic 
binding regions of the nuclear vitamin D receptor 
(VDR). The active form of Vit. D (1,25(OH)2D3 
or calcitriol) acts like a transcription factor (TF) 
that influences multiple other TFs and co-reg-
ulators and also binds to regulatory hotspots in 
the genome (105,106). Proving the role of Vit. 
D in other studies, the results have shown con-
served vit. D and especially the active form of 
it (1,25(OH)2D3) stimulates the expression of 
HLA-DRB1*1501 (107). Also, in the parts of the 
genome that are associated with autoimmune 
diseases, there are special changes in the VDR 
binding sites of genes (108). DNA methylation of 
VDR promotor, at exon 1c, could act as a gene 
regulator. Accordingly, higher levels of methyla-
tion have been observed concomitantly with 6.5-
fold higher mRNA levels in RRMS patients (109).

Although different parts of the DNA have been 
proposed to be associated with Vit. D, there are 
also some other factors that could dynamically al-
ter the epigenetic landscapes through binding to 
certain DNA regions and TFs (110). Interestingly, 
Vit. D could explain the month-of-birth effect on 
MS incidence as well. Therefore, decreased MS 
rate in November-born babies could be interpret-
ed as a result of lower maternal 25(OH)D levels 
or lower sun exposure in the first twelve weeks 
of life in those babies (111). However, the role of 
Vit. D alone was not sufficient enough to explain 
the different incidence rates in males and females 
because, in different studies, decreased risk of MS 

has been associated with 25(OH)D, which was 
found similar in both sexes, as similarly found 
among the American population (112,113).

The role of Vit. D in MS incidence was found to 
be remarkably different in Latin America (LAT-
AM) in comparison with European or Anglo-Sax-
on populations. Notably, whereas the low level of 
Vit. D is known as a risk factor for MS; it’s not 
extensible for the tropical countries in LATAM, 
such as Mexico and Brazil. In these countries, the 
levels of Vit. D were the same in both patients and 
controls. The data of LATAM cases showed very 
different results in disease frequencies, the course 
of disease, and response to treatments compared 
to other regions. Different results may be due to 
the broad heterogeneity known in Latin Amer-
ica. Overall, this is another fact that indicates 
the important role of genetics and epigenetics in 
the pathogenesis of the disease (114). Vit. D also 
influences disease progression and long-term 
disability outcomes (115). In a cross-sectional 
study, the use of Vit. D supplements was associ-
ated with better physical and mental quality of 
life (116). However, long-term follow-up stud-
ies have shown that low serum Vit. D levels are 
correlated with more severe disability outcomes. 
Some of the genes coding Single nucleotide poly-
morphisms (SNPs) are considered to be associat-
ed with Vit. D metabolism. In the previous study, 
there has been no association between SNPs and 
the severity of the disease (117). Because clinical 
trials have not provided meaningful evidence, the 
exact role of Vit. D in controlling disease activity 
remains still unresolved (118).

Body Mass Index (BMI)
A prospective study in the US recording fe-

males’ body size (at the ages of 5, 10, and 20 years), 
adulthood height, and weight at the age of 18 in-
dicated over 2-fold increased risk of MS in obese 
women at the age of 18, compared to women with 
normal BMI. The results of this study suggested 
that obesity in late adolescence or young adult-
hood could be a more effective risk factor for MS 
than in childhood or adulthood (119).

Besides, Vit. D could somehow influence the 
role of BMI in the etiology of MS as well, as there 
have been reports of lower levels of this vitamin 
in obese patients (120).

To describe the role of BMI in multiple scle-
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rosis, studies showed different types of DMA ce-
ramide-dependent hypermethylation in specific 
genes of MS patients, which changes the mono-
cyte count. Also, MS patients with high BMI have 
shown a more severe clinical appearance of the 
disease (121,122).

Smoking
Cigarette smoking is one of the most studied 

environmental risk factors of MS. Not only ac-
tive smoking but also exposure to smoke, either 
passively or secondary, have been associated with 
an increased risk of developing MS, progression 
of disease, and clinical disability (123). Smoking 
plays an important role in the DNA methylation 
status and modeling of the methylation levels of a 
CpG site in the AHRR gene, which remarkably in-
teracts with smoking load. It has also been report-
ed that methylations would increase the expres-
sion level of AHRR in MS patients after smoking 
(124).

Epstein Barr Virus (EBV) and Infectious Mono-
nucleosis 

There is a hygiene hypothesis suggesting a dou-
ble-edged sword effect for viruses in the patho-
physiology of MS disease. Acquiring the infec-
tion in late childhood or adulthood would make 
the individuals more susceptible to MS, but it 
may confer immunologic protection if acquired 
in infancy or early childhood. According to this 
theory, exposure to infectious agents in early 
childhood affects the development of Th1 pro-in-
flammatory cellular immune response and leads 
to low MS risk. However, this idea has not been 
implicated with any particular pathogen (125). 
Supporting the hygiene hypothesis, EBV infec-
tion and infectious mononucleosis in older ages 
have significantly enhanced the risk of MS. How-
ever, as a paradox, those who completely escaped 
EBV infection conferred very low MS risk (126). 

Recent studies in 2022 empowered the role of 
Epstein-Barr virus infection in the prevalence of 
autoimmune diseases, including MS (117). 

Human Endogenous Retroviruses and the Vari-
cella Zoster Virus (VZV)

The human endogenous retrovirus (HERV) se-
quences have been integrated into our genomes 
in several loci (127). HERV antigens are predomi-

nantly expressed on monocytes and B cells, which 
have been directly associated with MS and the dis-
ease activity (128,129) . The other virus suggested 
to be associated with MS is the varicella-zoster 
virus (VZV). By the way, in Mexico, VZV was the 
most frequent virus detected in relapses of MS 
patients (130).

Gut Microbiota and Parasites
The studies on animal models suggested that 

bacteria in the gut take part in the development 
of T-cells and cause MS-like neuro-inflamma-
tions (131). Despite the lack of human data to 
support the hypotheses of gut microbiota as a 
risk factor of MS, there have been studies proving 
that parasitic infections play a role in suppressing 
symptoms of MS, affecting T-cells and reducing 
proinflammatory cytokines by the mechanism of 
histone modifications (123,132).

Shift Work and Melatonin
Shift work during adolescence was observed to 

be correlated with an increased risk of MS (133). 
Considering the influence of night awakening on 
melatonin oscillations, some studies suggest the 
role of melatonin in inhibiting the differentiation 
of T-cells into pathogenic TH17 cells in vitro. But 
in the EAE exams, melatonin had therapeutic ef-
fects on neuro-inflammatory diseases (134). Re-
gardless of the contrasting findings, melatonin 
may be responsible for shift work as a risk factor 
of MS.

Epigenetics and New Therapeutic Ap-
proaches for MS

Epigenetic changes, as noted before, are re-
versible, and this makes them suitable targets for 
pharmacological therapies. Epigenetic therapy is 
known as the use of drugs to correct epigenetic de-
fects (135). There are different kinds of epigenetic 
drugs, including DNA methyl transferase inhibi-
tors (DNMTi), which have been involved in DNA 
damage repairs such as 5-aza-deoxycytidine, his-
tone deacetylase inhibitors (HDACi) such as val-
proic acid or trichostatin, histone acetyltransfer-
ase inhibitors (HATi), histone methyltransferase 
inhibitors (HMTi), and drugs targeting microR-
NAs (miRNAs)(136-139). The results of microR-
NA analysis suggest that they have the potential 
to be used as biomarkers before and during the 
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treatment of MS patients. Various drugs consid-
ered to take part based on research findings on 
microRNAs (140). Among these drugs, DNMTi 
and HDACi were more commonly of investiga-
tion interest. The studies were mostly conducted 
on animal models of MS and experimental auto-
immune encephalomyelitis (EAE), in which the 
effect of HDACi has been noticeable in mice and 
rats (141). Additional studies showed that valpro-
ic acid (VPA) in combination with thyroid hor-
mone had benefits by restricting the pathogenic 
T-cells in rats, and VPA attenuated the disease se-
verity and duration in EAE mice (136,142). 

VPA was demonstrated to enhance CD4 Th1 and 
Th17 and also macrophages through down-regu-
lating mRNA expression of the pro-inflammato-
ry cytokines, such as interferons, tumor necrosis 
factor (TNF)-a, IL-1, and IL-17 in the spinal cord. 
In addition, it has increased the expression of IL-
4, which is known as an anti-inflammatory cyto-
kine (139). The HDACi trichostatin drug, used in 
the relapsing phase of EAE in mice, has reduced 
the spinal cord inflammation and demyelination 
axonal loss and, therefore, reduced the disability 
(141).

Glatiramer Acetate
 Moreover, the level of brain-derived neuro-

trophic factor (BDNF) has been reduced in serum 
and CSF of RRMS patients compared to controls, 
which has been increased during the post-relapse 
phase in patients, and it was remarkably reversed 
by induction of the MS drug Glatiramer acetate 
(143,144). In another study, SIRT1, the histone 
deacetylase, was found to be impressed by glati-
ramer acetate treatment, which seems to be a bio-
marker in order to evaluate response to treatment 
in MS (145).

Natalizumab and Fingolimod
As discussed above, the level of miRNAs would 

increase the expression of IL-17a, TNFα, and 
IFN γ. Furthermore, in the patients with a high 
level of miR-155, IgG titers were increased sig-
nificantly. Also, in the patients who were treated 
with Natalizumab, miR-155 and miR-26a were 
down-regulated. Therefore, miRNAs may be used 
as biomarkers to determine the efficacy of treat-
ment as well (146). Moreover, while the CSF level 
of miR-150 decreased following treatment with 

Natalizumab, the plasma level decreased as well. 
As this level was increased following treatment 
with  Fingolimod, it is suggestive of the role of 
immune cells as a source of miR-150 (146).

MiR-17-5p, which was previously proven in au-
toimmunity, was up-regulated in CD41 cells of MS 
patients. Further studies demonstrated that miR-
17-5p affects the expression of genes of phospha-
tase, tensin, and phosphatidyl-inositol-3-kinase 
(147). On the other hand, miR-17 down-regula-
tion was associated with the upregulation of its 
target genes, such as PTEN, BIM, E2F1, and p21. 
This miRNA  was downregulated by Natalizum-
ab therapy and upregulated during relapse (146). 
Further studies indicated modified expression of  
in miR-125a-5p, let-7c, miR-642, miR-320, miR-
320b and miR-629, after 1 to 6-month of therapy 
with Natalizumab (147).

MiRNA levels in natalizumab-treated patients 
have been measured in several clinical studies. 
miR-155, miR-132, miR-146a,z, and miR-26a are 
recommended as one of the starting drugs for 
patients with active phase RRMS by the Amer-
ican Academy of Neurology. It was treated with 
natalizumab, and after six months of treatment, 
the levels of these miRNAs were reduced. CD8+ 
T-cell activation and CD4+ T-cell proliferation are 
induced by miR-155 (148,149).

Dimethyl Fumarate
The FDA approved dimethyl fumarate, an oral 

medication, in 2013 to treat RRMS. Further stud-
ies in 2021 reported reduced levels of miR-125a-
5p, miR-146a-5p, and miR-155 after prescription 
of dimethyl fumarate treatment. By inhibiting the 
release of proinflammatory cytokines and chemo-
kines from endothelial cells, miR-125a-5p reduc-
es neuroinflammation and improves blood-brain 
barrier integrity (89).

Several adverse effects, including progressive 
multifocal leukoencephalopathy (PML), were 
associated with dimethyl fumarate, diroximel 
fumarate (150,151), and fingolimod, which had 
moderate benefits for the patients (152).

Ofatumumab (153) and ublituximab, an SC-ad-
ministered anti-CD20 mAb (154), confer modest 
protection against MS. In addition, rituximab, an 
anti-CD20 antibody, which has been shown to 
provide protection against RRMS (155,156), has 
been discontinued due to patent expiration. 
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The nematode Auanema freiburgensis was 
treated with the HDAC class I inhibitor butyr-
ate and valproic acid, and the broad-spectrum 
HDAC inhibitor TSA increased histone 3 and 4 
acetylation (157). Recent research has revealed 
the transmission of epigenetic or epigenetic in-
formation not based on DNA sequence, from 
yeast to humans over generations (158).

Detecting cell-free circulating DNA (cfDNA) 
released from target organs is a new method in 
epigenetic therapies. As determined in 2016, 
higher cfDNA levels in the relapse phase of MS 
patients may help to distinguish cellular debris 
of target tissue from normal debris (159). While 
the latter study has been performed based on 
cell type-specific DNA methylation, further cfD-
NA-based studies were done by using myelin-pro-
ducing oligodendrocytes-specific markers (160).

The next method, the miRNA ‘sponge meth-
od,’ was used as a tool to probe miRNA func-
tions. Using vectors encoding these sponges into 
cultured cells, the sponges could selectively bind 
to endogenous miRNAs and allow translation of 
the target mRNAs on the exact region of the ge-
nome (161). As another method, receptor-coated 
nanoparticles or micro-vesicles provided a specif-
ic cell type-guided delivery in peripheral immune 
cells (162,163). In the study by Meijer et al. has 
shown that BACH1 and STAT1 are transcription 
factors that have been described to participate 
in gene regulation of oligodendrocyte progeni-
tor cells (OPCs). Furthermore, single-nucleotide 
polymorphisms (SNPs) interfered with these re-
gions in mouse and human OLG when examined 
for treatment with enhanced activated interfer-
on-gamma (IFN-g)(53). These overlaps could 
add new therapeutic targets for future studies.

Expert Opinion Section
The HDACi and DNMTs inhibitors may result 

in side effects due to their global action and low 
specificity  (164,165). Therefore, specific epigen-
etic therapy that acts only on certain pathogen-
ic loci without affecting the other regions is re-
quired. Recent studies support the ability of the 
CRISPR-dCas9 system to play a role in transcrip-
tion targeting histone PTMs and DNA methyl-
ation (166-169). So far, these studies are only in 
preclinical stages and there is still an open way to 
reach safe clinical outcomes.

Based on different strong evidence on the role 
of epigenetics on MS and DNA Methylation Sta-
tus in Associated Genes with MS (Table 1), in-
cluding hypo – hyper methylations on the specific 
LOCs and Alterations in miRNA Expression Lev-
els in MS (Table 2). Lately, drugs that act on the 
methylation status of genes have been used in the 
treatment of MS. In the case of these, DNA meth-
ylation changes differ significantly in the differ-
ent phases of MS and even patterns of the disease 
relapsing-remitting, progressive or secondary 
progressive MS. For example, HLA-DRB5 Hy-
per-methylation in specific subtype of RRMS or 
miR-155-5p Down-regulation CD4+ T cells Spe-
cially in SPMS. As an opinion personalized gene 
therapy based on HLA typing of the gene on the 
exact laking LOCs may open a new way to treat-
ment of the patients.

Conclusion
Although after decades of studies on MS, the 

certain cause of this neurodegenerative, disabling 
disease remains under a shadow of doubt, an in-
creasing number of valuable data has been pro-
vided on the role of genetics and environmental 
factors in the pathophysiology of this disease. 
Furthermore, specific epigenetic changes found 
in MS patients are suggested to be a link between 
genetics, lifestyle, and environmental factors. 
Most of all, there is valuable evidence of DNA 
methylation changes and histone acetylation in 
MS patients on the special loci of the genome in 
this disease. Due to the reversibility of epigenetics, 
it seems to be a good pathway to MS treatment. 
Accordingly, as the pathogenesis of the disease 
is believed to be interacted by these changes in 
the epigenome, epigenetic therapies will act on 
the exact region of the genome. However, more 
studies are still needed on epigenetic changes, 
and as the epigenetic drugs have been used only 
in preclinical trials, more trials are required for 
the common use of these medications in MS.
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